
Technische Universität Dortmund
Department of Biochemical and Chemical Engineering
Chair of Process Dynamics and Operations
Prof. Dr. Sebastian Engell

DEVELOPMENT OF LOCAL POSITIONING

SYSTEM FOR A PIPE-LESS PLANT

Automation & Robotics

Group Project SS18

Group Members:

Abdulrahman Abouelkhair(198803)

Medhini Rajagopal Balamurugan(198735)

Stefan Rottstegge(191455)

Stephan Vette(198907)

Supervisors:

Afaq Ahmad

Marina Rantanen-Modéer

Abstract

The pipeless plant at the Process Dynamics and Operations group is an experimental setup of
Automated Guided Vehicles (AGVs) moving between various stations. The AGVs dynamically
change trajectories in an operational mode based on a Model Predictive Control (MPC) scheme
with the objective to get from one station to the other while at the same time avoiding each
other. The current positioning system is based on pattern recognition where the system tracks
each AGV based on a unique pattern of LEDs via a camera that overlooks the plant. The
vision-based positioning system displays some flaws and should be replaced by a system more
adapted to the actual operational environment of the experimental plant.

The project aimed at first evaluating different potential positioning systems, selecting one
of them based on defined metrics. A proof-of-concept was developed based on the chosen
technology for the experimental pipeless production plant in a model-driven fashion and the
Radio-Frequency Identification (RFID) was chosen for further evaluation and implementation.
The system detects RFID tags with an reader and an antenna. The reader receives the unique
Identification (ID) and the RSSI (Received signal strength indication) of the tag which is being
used for calculating the position of the robot.

For the estimation of the position part, the WiFi module then transmits the reader data through
the local network, using TCP/IP communication. The system data is lastly received by a PC
that represents the control hub of the plant through a framework implemented in C#. The
algorithm which calculates the position of the AGV prompts for this data as position and/or
orientation of an AGV that needs to be computed.

2

Contents

1 Introduction 7

2 Pipeless plant 9
2.1 Experimental pipeless production plant . 9
2.2 Problems with the existing setup . 10
2.3 Project objectives . 10

3 Possible localization technologies for chosen application 11
3.1 Triangulation . 11
3.2 Pattern Recognition . 15
3.3 Map-Based Localization[1] . 17
3.4 RFID . 20

4 Principle of localization via Radio Frequency Identification technology 23
4.1 Radio Frequency Identification . 23

4.1.1 RFID System . 23
4.1.2 Working Principle . 23

4.2 Trilateration . 25

5 Hardware 27
5.1 RFID reader and antenna . 27
5.2 RFID tag . 28
5.3 Wifi Module . 29
5.4 Hardware Setup . 30

6 Simulation 32
6.1 Emulator . 32
6.2 RSSI Measurements with real hardware . 33
6.3 Simulation with emulated data . 34
6.4 Results . 34

7 Implementation 35
7.1 Communication . 35
7.2 Initialization procedure . 38

7.2.1 Recording and filtering data . 42
7.2.2 Analysing data . 42
7.2.3 Selection of correct distance related to RSSI 43
7.2.4 Estimation of initial position and orientation 45

7.3 Test setup . 46
7.4 Results . 48

8 Conclusion 50

9 Future work 51
9.1 Hardware . 51
9.2 Software . 51

10 References 52

3

11 Appendixes 54
11.1 Appendix A: Emulator RFID data (Matlab) . 54
11.2 Appendix B: Receiving data from reader via Wifi (C#) 58
11.3 Appendix C: Initialization procedure (C#) . 62
11.4 Appendix D: Initialization turn and recording Data(C#) 62
11.5 Appendix E: Filling Array(C#) . 64
11.6 Appendix F: Checking for solutions in array(C#) 65
11.7 Appendix G: Position and orientation estimation(C#) 68
11.8 Appendix H: Initialization procedure 3(C#) . 71
11.9 Appendix I: Initialization procedure 4(C#) . 73
11.10Appendix J: Initialization procedure 5(C#) . 73
11.11Appendix K: Initialization procedure 6(C#) . 74
11.12Appendix L: Initialization procedure 7(C#) . 80
11.13Appendix M: WiFi Initialization WeMos D1 Mini (Arduino) 82
11.14Appendix N: Launch the communication) . 82
11.15Appendix O: Receiving data from RFID reader 84
11.16Appendix P: Publishing tags IDs through the network 84
11.17Appendix Q: Manual Configuration of the RFID reader 85
11.18Appendix R: Communication Outlay . 86

4

List of Figures

1 Existing setup . 9
2 The ListOfFigures caption . 11
3 The ListOfFigures caption . 12
4 Implementation of passive triangulation . 13
5 Ceiling with periodic patterns of lamps acting as landmarks. 15
6 Belief grid of the robot in the plant . 16
7 Snapshot of the ceiling . 16
8 The ListOfFigures caption . 17
9 The ListOfFigures caption . 18
10 The ListOfFigures caption . 18
11 The ListOfFigures caption . 18
12 The ListOfFigures caption . 18
13 Passive RFID System . 20
14 Active RFID System . 20
15 Reader Tag . 23
16 RFID System . 24
17 Inductive Coupling . 24
18 Overview Trilateration . 26
19 RFID reader KTS Systeme RFIDM1356-001 . 27
20 RFID Antenna KTS Systeme PCBA1356 8 . 28
21 The ListOfFigures caption . 29
22 Tags on the plant floor . 29
23 The ListOfFigures caption . 29
24 Robot Hardware Schematic . 30
25 Hardware Schematic . 30
26 Top of the Robot . 31
27 Base of the Robot . 31
28 Relation between RSSI and distance antenna to tag 33
29 RFID-WeMos Module Communication . 35
30 WeMos Module Network Communication . 36
31 Computer Network Communication . 37
32 Different possible positions for one antenna position 38
33 Possible hazards/obstacles . 39
34 Flow Chart: Initial procedure 360◦ turn . 40
35 Test environment in GUI . 40
36 Flow Chart: Analizing initialization measurment points 43
37 Flow Chart: Selection of correct distance and most proper IDs 44
38 Computing the center of the robot . 46
39 Orientation of robot in absolute angle . 46
40 testing setup for initialization procedure . 47
41 Estimated position in x-direction . 48
42 Estimated position in y-direction . 48
43 Estimated orientation . 49
44 Communication Outlay . 86

List of Tables

1 Pros and cons points of passive triangulation . 14
2 Pros and cons points of active triangulation . 14
3 Pros and cons points of Mobile Robot Localization based on Pattern Recognition 16
4 Pro and cons of Localization using Ultrasonic Sensor 19
5 Overview RFID systems . 21

5

Final report, Local positioning system pipeless plant, September 26, 2018 Page 6

6 Pro and cons of active RFID system . 22
7 Pro and cons passive RFID system . 22
8 Relation between RSSI and distance antenna to tag (data) 33
9 Results Simulation . 34
10 Filled initalization array after 360◦ turn . 41
11 String preperation . 42
12 Possible shapes of pattern . 44
13 Positions of the IDs in the test setup . 47

Final report, Local positioning system pipeless plant, September 26, 2018 Page 7

1 Introduction

In today’s world, the development and implementation of the positioning system for the
autonomous vehicle in a confined space remains to be a major issue and hindrance to a better
control system. Though there exists many types of local positioning systems, the precision
remains to be still a challenge. This problem becomes critical in a place of no global positioning
system (GPS) access. This project aims at investigating various methods of indoor localization
technologies and to develop a proof-of-concept for the existing pipeless plant setup.

In the past years students and researchers at the Process Dynamics and Operations group at
the TU Dortmund have developed the pipless plant with vision based positioning system which
needs to be replaced to improve the acurracy of the estimation of the position. Both the old
and newly implemented techniques are written in C# that sends the position update to the
Python based controller code.

In this project, various potential positioning techniques were discussed and their pros and cons
were compared. The different localization methods will be further discussed in section 3.The
four different alternatives included a triangulation based methods for indoor applications,
pattern recognition based method (such as QR-codes), map-based localization and RFID. After
a thorough analysis of the listed technologies, RFID was chosen to be the ideal technique. It
is a versatile technology with multiple application areas, e.g. access control, race tracking and
positioning. Automated multi-agent systems are increasingly utilizing RFID for localization
as the technology has been proven to have many advantages over vision based positioning
systems.There are two potential ways to implement an RFID localization system namely
active and passive as discussed in 4. The latter is based on comparatively many passive tags,
uniformly placed, on the ground of the plant area and active readers on the AGVs. The latter
option was chosen for the project based on cost efficiency, system scalability and from literature
proven applicability.

An RFID system is made up of two parts: a tag and a reader. RFID tags are embedded with
a transmitter and a receiver. The RFID component on the tags has two parts: a microchip
that stores and processes information, and an antenna to receive and transmit a signal, which
partly contains the unique ID of the tag. The hardware components which are added to the
AGVs comprise an RFID antenna, an RFID reader and a WiFi module. Further hardware
implementation is explained in section 7. The WiFi module then transmits the reader data
through the local network, using TCP/IP communication. The system data is lastly received
by a PC that represents the control hub of the plant through a framework implemented in C#.
A TCP-Client was established in the C# framework in order to handle incoming RFID data.
The WiFi-module continuously sends data and the algorithm calculating the position of the
AGV prompts for this data as position and/or orientation of an AGV that needs to be computed.

The implemented positioning algorithm requires the ID and the RSSI of at least three RFID

Final report, Local positioning system pipeless plant, September 26, 2018 Page 8

tags to calculate the position of the antenna. The RSSI gives a relation between the detected
tag and the distance to it, in other words, a radius. The system has a record of the position
of each tag and the ID of each tag hence holds information about the uniquely defined position
of the tag. With three positions and the three corresponding radii, one can use trilateration to
compute the position of the antenna. This concept was developed into simulation which would
be discussed in section 6. The experiment based results will be explained in section 7. Based
on the experiment, conclusion and future work are given in section 8 and 9 respectively.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 9

2 Pipeless plant

In chemical industry, pipeless plants are used due to its high flexibility level. In these type of
plants, AGVs are used to transport the vessel from one processing station to another. Thus, for
each and every batch, the AGV transport the vessel to various stations to create an end product,
making the pipeless plant multi-product and multipurpose chemical production. In this way,
piping and the associated cleaning is eliminated, thus aiding in cost and energy efficiency.

2.1 Experimental pipeless production plant

The pipeless plant framework in the TU Dortmund, developed by the Process Dynamics and
Operations Group (DYN), consists of four AGVs, two color stations, one mixing station and one
storage station. Each station has a role in producing batch of plaster art, for example mixing or
filling the product in the vessel. The stations and the AGVs are controlled by a Programmable
Logic Controller(PLC). The vessel on the AGV is moved from one station to another based on
the schedule to produce a batch. Regarding the positioning system, the plant uses a camera to
identify the LED pattern on the AGV. Each AGV has a unique pattern that distinguishes it
from another.

Figure 1: Existing setup

Final report, Local positioning system pipeless plant, September 26, 2018 Page 10

2.2 Problems with the existing setup

Since the existing setup uses vision based positioning system, the plant suffers various disad-
vantages as described below:

• During bright day-light conditions, no position is updated by the camera. This is due to
the fact that the threshold of the sunlight and the LED on the AGV becomes equal that
the camera fails to detect any pattern, thus affecting the whole system efficiency.

• The camera suffers the so called fish-eye camera lense problem, meaning that the position
error is proportional to distance from the center of the image. This is caused by the
distortion a wide angle lens.

• The restriction of usage of incoming information from the camera during software imple-
mentation.

• The percentage error and the processing time increases with the increase in number of
robots to be localized thus affecting the controller input.

All these cons added up together cause a deterioration in the accuracy of the position of the
AGV, which in turn affects the controller leading to a drop in system efficiency.

2.3 Project objectives

The disadvantages of the vision based positioning systems as discussed above leads to the urge
for creating a localization that overcomes all the cons already suffered.

This projects aims to research about alternative positioning system and to evaluate with the
selected technique by simulation. The ultimate goal is to develop a positioning system with
improved position precision and to compare and develop practical proof-of-concept.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 11

3 Possible localization technologies for chosen application

Since the main aim of the project is to improve the positioning system of the existing setup,
several other techniques were discussed, ending up in four methods namely triangulation,
pattern recognition, radio frequency identification, map-based localization. The pros and cons
were listed and the mentioned techniques were compared. The following section deals with a
brief description of the above-mentioned techniques.

3.1 Triangulation

Since the plant has a specified size in which the location of multiple objects has to be performed
the method of triangulation is one promising technique in which research was made. Triangu-
lation was already a common principle of measurement in the 18th century and it is divided
into active and passive triangulation. Passive triangulation is a geometrical method based on
two measurement stations which positions are known exactly. At these two measurement points
angles of the desired point in space are measured to compute the localization in the specified
coordinate system (x, y, z) with trigonometrical formulas. With respect to the system setup
used in the 18th century nowadays two cameras are installed to perform a geographical method
of 3D object-data estimation as shown in fig. 2 [2].

Figure 2: Passive triangulation setup with two cameras 1

1Source: https://arxiv.org/abs/1410.2535

https://arxiv.org/abs/1410.2535

Final report, Local positioning system pipeless plant, September 26, 2018 Page 12

To solve the problem of position estimation, it is necessary to know the parameters of the left
and the right camera visualized in fig. 2. In theory the triangulation is trivial, since each and
every point of the images of the respective cameras maps to a line in 3D space. If a pair of cor-
responding points, in the case of the pipesless plant an AGV is found, the projection of a point x
in 3D space can be computed. Active triangulation in comparison to passive triangulation needs
one camera and at least one source of structured light (e.g. Laser). The geometrical location
and orientation of the camera and light source in space need to be known. Two possible setups
with either a laser point or a stripe as structured light are shown in fig. 3 [3][4].

Figure 3: Active triangulation 2

To solve the active triangulation problem, the structured light has to point an object which
location is desired to estimate. If this point is found on the 2D image of the camera, a triangu-
lation is performed. Basic trigonometrical formulas [5] use the properties and parameters of the
camera and light source to estimate the position of the AGV.

2Source: https://www.tuhh.de/ft2/wo/Scripts/Videometrie3D/Prinzip3DVideoMetrie.pdf

https://www.tuhh.de/ft2/wo/Scripts/Videometrie3D/Prinzip3DVideoMetrie.pdf

Final report, Local positioning system pipeless plant, September 26, 2018 Page 13

Implementation

One possible way to implement a solution for the passive triangulation is to attach 2 high
resolution cameras with USB 3.0 on two edges of the plant as shown in fig. 4.

Figure 4: Implementation of passive triangulation
1

The left and right camera are sequentially taking pictures which are transmitted to the plants
computer where the image processing takes place.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 14

Based on the research made, two tables with advantages and disadvantages of the two triangu-
lation systems were created.

Passive Triangulation

Pro Con

Upgrade to USB 3.0 for faster data transmitting possible Light dependent

Upgrade to a camera with higher resolution to reduce
measurement error possible

New concept of orientation may be needed

No Fish-Eye-Lense problem Limited range of observation

Low cost

Table 1: Pros and cons points of passive triangulation

Active Triangulation

Pro Con

Upgrade to USB 3.0 for faster data transmitting possible New unknown laser technology is needed

Upgrade to a camera with higher resolution to reduce
measurement error possible

High costs for several lasers (one per AGV)

Easy detection of laser points on camera image Laser needs to move while AGVs are moving

Limited range of observation

Light dependent

Table 2: Pros and cons points of active triangulation

Final report, Local positioning system pipeless plant, September 26, 2018 Page 15

3.2 Pattern Recognition

In this type of localization, estimation of the robot is done in indoor environments using only
on-board sensors, namely a web-cam and a compass [6]. The ceiling of the plant is constructed
with a pattern of static landmarks whose positions are known a priori as shown in fig. 5. All
landmarks are indistinguishable from each other and might additionally be distributed along
the ceiling in a periodic pattern. The landmark attached to the ceiling can be lights, QR codes,
sensors or other reference points. The ceiling is used since it is immune to changes. A camera
is installed on the robot, which takes snapshots of the ceiling which can be seen in fig. 7. The
robot pose relative to the landmark is calculated with the help of the distance of the landmark
to the center of the image and its angle relative to the direction of the robot motion. An Inertial
measurement unit(IMU) is additionally used to give the absolute orientation of the robot in the
plant. The Markov Localization (ML) algorithm is used to estimate the belief grid of the robot
position inside the environment.

Figure 5: Ceiling with periodic patterns of lamps acting as landmarks.

Implementation

The goal is to compute the pose of a mobile robot inside an indoor environment using a camera
and an IMU. As mentioned, ML is used to create a belief grid of the robot in the plant environ-
ment. This is done with the help of the snapshots of the ceiling taken by the camera. As seen
in the fig. 6, the blue and black areas have lower belief and green and yellow areas have higher

Final report, Local positioning system pipeless plant, September 26, 2018 Page 16

belief. The obtained pattern is evaluated and based on the pattern, the position of the robot is
estimated. Thus with the help of the camera and the IMU, both the position and orientation is
obtained.

Figure 6: Belief grid of the robot in the plant Figure 7: Snapshot of the ceiling

Based on the research, the advantages and disadvantages of Mobile Robot Localization based
on Pattern Recognition are created.

Pro Con

The ceiling is usually immune to changes as a
reference and implement landmarks on the ceiling itself

Complex and many changes have to be
added to the plant

No Fish-Eye-Lense problem Cost intensive

Light dependent

Table 3: Pros and cons points of Mobile Robot Localization based on Pattern Recognition

Final report, Local positioning system pipeless plant, September 26, 2018 Page 17

3.3 Map-Based Localization[1]

Adaptive Monte Carlo Localization (AMCL) is a probabilistic localization system for a robot
moving on a two dimensional surface. It implements the adaptive (or KLD-sampling) Monte
Carlo localization[7][8] approach, which uses a particle filter to track the position of a robot
against a known map. Laser and Odom scans are taken in a laser-based map. With these

Figure 8: Adaptive Monte Carlo localization 1

Information output positions are estimated like seen in fig.8. On startup, AMCL initializes its
particle filter according to the parameters provided. Note that, because of the defaults, if no
parameters are set, the initial filter state will be a moderately sized particle cloud centered at
(0,0,0).

Implementation

To implement such a technique a global and local map should be created as shown in fig. 9 and
fig. 10, In the following steps the localization of a robot based on a map can be seen.

• SLAM (Simultaneous Localization and Mapping) is a technique used in mobile robotics
in which a robot builds a map of an unknown environment, while keeping track of its
localization in this environment at the same time.

1Source: www.moodle.tu-dortmund.de/mobile-robots

www.moodle.tu-dortmund.de/mobile-robots

Final report, Local positioning system pipeless plant, September 26, 2018 Page 18

Figure 9: Global Map 1
Figure 10: Local Map 1

• Adaptive Monte Carlo Localization
The goal for this algorithm is to determine the position of the robot on a given map of the
environment.
At every time t the algorithm takes as input the previous prediction Xt−1 ={
x1t−1, x

2
t−1,, x

M
t−1

}
as an input, an actuation command ut, and data received from

sensors zt; and the algorithm outputs the new prediction Xt.

• Orientation Correction

Figure 11: Robot Orientation 1
Figure 12: Correction with global map 1

Initially the robot assumes a position as shown in fig.11, and as it moves it begins to

1Source: www.moodle.tu-dortmund.de/mobile-robots

www.moodle.tu-dortmund.de/mobile-robots

Final report, Local positioning system pipeless plant, September 26, 2018 Page 19

re-correct it’s estimated orientation using the static obstacle with the global map as a
reference (see fig. 12).

Based on the research made, two tables with advantages and disadvantages of the two Map-
Based Localization systems are created.

Using Ultrasonic Sensor

Pro Con

Cheaper than the other localization techniques
with e3 per each Ultrasonic sensor

Multiple Ultrasonic sensors need to be installed
on a single robot due to very small scan angle
ranging 30◦

Easy installation of the sensors on the robot
due to small size

A plant installation with similar landmarks
causes localization error using AMCL

Ultrasonic sensors have faster feedback than
the previous camera based localization system

Large plant size causes high computational
effort for AMCL

Ultrasonic sensor has large scan range of
4.5 meters

Robots should start at every launch from static
home position

Different map based localization
algorithms are available

Table 4: Pro and cons of Localization using Ultrasonic Sensor

Final report, Local positioning system pipeless plant, September 26, 2018 Page 20

3.4 RFID

One of the possible solutions to solve the challenging problem of indoor localization is the use
of the Radio-frequency Identification (RFID) technology. The main areas of this technology is
indeed ”supply chains, transport, manufacturing, personnel access, animal tagging, toll collec-
tion” [9], but also has become popular in localizing objects and persons. Where in the main
applications only the identification has to be realized, also the strength of the signals is impor-
tant to estimate the position of a certain object.
The main idea of those systems is that a reader detects a tag and reads its information. The
technology can be divided into three main types: passive, semi-passive and active systems. A
passive system, like it is been shown in fig. 13, consists of a reader, which is connected to an
antenna and a computer and a passive tag.

Figure 13: Passive RFID System 2 Figure 14: Active RFID System 2

The system is called passive, because the power supply is realized by the radio signal of the
reader. In case where the tag is in the reading range of the reader, the tags get enough power to
send predefined information (for example ID) back. The active system (see fig.14) in comparison
has an active tag which has an own power supply. The semi-passive tag has a build-in battery
that the tag has more power to communicate, but is not used to generate radio frequency signals.
Another classification of RFID systems is the frequency of the radio waves. It can reach from
0.135 MHz (Low Frequency) to 5875 MHz (Super High Frequency). The table 5 gives an overview
about the systems related to reading ranges, reading rates and the ability to read near metal or
water.

It can be seen that the passive systems have a smaller reading range than the active systems,
but have a bigger data rate. Another important aspect in taking the best choice is, that passive
tags are cheaper (around 0.20 e) than active tags (around 9.00 e).

2Source: Overview of RFID-Based Indoor Positioning Technology [9]

Final report, Local positioning system pipeless plant, September 26, 2018 Page 21

Table 5: Overview RFID systems 3

Implementation

There are mainly two different ways to realize a localization system of the AGVs in the pipeless
plant. Based on the fact that the plant has a size of 3 by 4 meter, the tracking can be carried out
with a passive system in which a couple of passive tags on the floor can be used as landmarks.
In this case the reader plus the antenna would be placed on the AGV and localize with the help
of the detected tags. The other systems consists of three or four readers in each corner of the
plant and an active tag placed on each AGV.

3Source: Overview of RFID-Based Indoor Positioning Technology [9]

Final report, Local positioning system pipeless plant, September 26, 2018 Page 22

Based on the research made, two tables with advantages and disadvantages of the two RFID
systems were created.

Active RFID system

Pro Con

Light independent Prototype more expansive (3 reader + avtive tags)

Scalable solution
Datarate is related to the amount of
detected tags a the same time

Localization only has to be realized in
a bigger area - medium accuracy

Anticollision need, cause more AGVs are
used at the same time

Wired communication between reader and
computer possible

Signal strength can be influenced by envirnonment
(metal or water)

Simple algorithm (Trilateration)

Table 6: Pro and cons of active RFID system

Passive RFID system

Pro Con

Light independent
Communication between AGV and computer
has to be realized

Scalable solution
Data rate is related to the amount of
detected tags a the same time

Localization only has to be realized between
four tags (small area) - high accuracy

Anticollision need, cause more tags are
detected at the same time

Simple algorithm (Trilateration)

Prototype cheap (1 reader + passive tags)

Table 7: Pro and cons passive RFID system

Final report, Local positioning system pipeless plant, September 26, 2018 Page 23

4 Principle of localization via Radio Frequency Identification
technology

4.1 Radio Frequency Identification

After deep analysis of different localization methods the Radio Frequency Identification[10][11]
was chosen due to its various advantages. This technology involves a reader and a tag which
is placed on the object to be tracked. The reader is continuously sending the radio waves, and
when the tag is within the range of reader, it sends a feedback signal to the reader as shown in
fig. 15. The reader can track multiple tags at the same time.

Figure 15: Reader Tag

4.1.1 RFID System

Regarding the tags as shown in fig.16, it can be either

• Active tag which has its own power supply

• Passive tag which relies on the radio waves as its source of energy that come from the
reader

• Semi-passive tag which has power supply, but for transmitting the feedback, it relies on
the signal coming from reader

4.1.2 Working Principle

The RFID consists of three main parts:

• A Generator which generates the radio waves

• A signal detector which receives the feedback from the tag

• Micro-controller which processes the information from the generator and the detector

Final report, Local positioning system pipeless plant, September 26, 2018 Page 24

Figure 16: RFID System

The tags consists of:

• Transponder: that receives radio waves and sends the feedback

• Rectifier Circuit: which stores the energy coming from the wave across the capacitor, and
this energy is used as a power supply for the controller as well as the memory

Figure 17: Inductive Coupling

The whole process of sending the information between the tag and the reader is based on
principle of ”Inductive coupling” as shown in fig. 17. The reader is continuously sending radio

Final report, Local positioning system pipeless plant, September 26, 2018 Page 25

waves with particular frequency. In this case, the reader and tag should be within the range of
the frequency. The field which is generated by the reader is used coupling antenna of the tag,
and due to the mutual coupling, the voltage is induced across the coil of the tag. The voltage
is rectified and used as power supply for the controller and derive synchronization clock for the
controller.
When the load circuit is connected to the coil, the current starts flowing through it. Therefore,
when the load is switched on and off , the current will be turned on and off respectively leading
to the induction of particular voltage in the reader. This method of switching the load is called
load modulation. Thus, with the help of load modulation with respect to the data stored in
the tag, the value of the induced voltage can be modified. Which leads to the generation of
modulation on carrier frequency, thereby sending the data to the reader.

4.2 Trilateration

Trilateration is a method to compute the intersection point P of three circles/spheres. For this,
it is necessary to know the three center of the circles/spheres plus their corresponding radii. The
basic idea to estimate the intersection point is to use the mathematical description of a sphere:

r2 = (x− x1)
2 + (y − y1)

2 + (z − z1)
2 (1)

where (Pn = (xn, yn, zn)) is the center of the sphere [12]. A few assumptions can be made
to simplify (1) for a flat floor/ 2D space. First of all, the z-component of all spheres can be
neglected. Another assumption is to define the origin of the first circle as the center of the
coordinate system, the second along the x-axis with an distance (d) and the third shifted in x-
(i) and y-direction (j), which is illustrated in following fig. 18.

With known positions of the center of the circles d, i and j can be computed in the following
way[12]:

d = |P2 − P1| (2)

ex =
1

d
(P2 − P1) (3)

ax = P3 − P1 (4)

i = ex · ax (5)

ay = (P3 − P1)− i ∗ ex (6)

ey =
ay
|ay|

(7)

j = ey · ax (8)

It has to be notice that P1,P2 and P3 are 2D vectors, which represents the x- and y-coordinate
of the points.
After obtaining these values, the relative distance from the origin of the coordinate system can

Final report, Local positioning system pipeless plant, September 26, 2018 Page 26

Figure 18: Overview Trilateration

be computed with the help of (1) and the center of the circles P1(0,0), P2(0,d) and P3(i,j) as
follows:

xt =
r21 − r22 + d2

2 ∗ d
(9)

yt =
r21 − r23 + i2 + j2

2 ∗ j
− i ∗

(
xt
j

)
(10)

The absolute position of the intersection point is computed in following way:

P = P1 + ex ∗ xt + ey ∗ yt (11)

It can be seen, that those equations are using the first two points plus radii to estimate
the x-coordinate, while the first and third point plus the computed x-coordinate are used to
estimate the y-coordinate.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 27

5 Hardware

5.1 RFID reader and antenna

The RFID reader from KTS Systeme (see fig.19) is a HF Modul (frequency around 13.56 MHz).
It contains a full-fledged microcontroller with a high-performance RFID transceiver Integrated
Circuit (IC). It has a 1.27 mm pitch pin-headers for Through Hole Technology (THT) mounting.
The connection to an external antenna can be realized via a single ended 50 Ω connection or
via pin header U.FL. jack, which was used in this project.

Figure 19: RFID reader KTS Systeme RFIDM1356-001

The communication to other devices is realized via a Universal Asynchronous Receiver-
Transmitter (UART) compatible serial interface via pin 6 (RX) and 7 (TX). The power supply
is a 5 V DC connection via pin 1 (VCC) and pin 10 (GND). The reader is standardized to ISO
15693 and ISO14443A/B and has the overall dimensions 36 x 16 x 4 mm [LxWxH][13].
The reader has three LEDs:

• Green: Run - Lights when reader receives power

• Yellow: Tag - Lights when a tag is detected

• Red: Data - Lights when data transfer to or from a tag

To configure the reader, KTS Systeme also provides a software (Tag2Image) for free.
The reader was configured to scan the environment in an automatic anti collision mode
(AT+Scan=AC,RSSI). Anti collision means that multiple tags can be detected at the same
time and is highly important in this project. The output of the scan is a continuous
information of the Identification (ID) and the RSSI of the detected tags. For example:
SCAN:+UID=E00402000018313E,+RSSI=7/6 means that the tag with the ID (in hex)

Final report, Local positioning system pipeless plant, September 26, 2018 Page 28

E00402000018313E was detected with a RSSI of 7/6. The first number of the RSSI (in this
example 7) is the value for the main channel. The second number (for this example 6) is for the
auxiliary receiver channel and is almost similar with the first one, but always smaller. In this
project only the first number of the RSSI was used, because they are almost the same. The
RSSI is an integer value from 0 to 7 and gives an information about the distance between the
antenna and the detected tag. 0 stands for the maximum reading range which was mentioned
to be around 15 cm. A detailed relation was obtained through experiments during the project
and will be explained later in this report. An AT Command Reference Guide is also available
on http://rfid.kts-systeme.de/downloads/.

The antenna (fig. 20) is a HF PCB Antenne (PCBA1356 8) also from the company
KTS Systeme. It has a dimension of 80 x 80 mm. The connection to the reader is realized by
a SMA jack and has a self-impedance of 50Ω. The antenna is designed for passive tags in a
frequency range around 13.56 MHz and has a maximum power of 1W.

Figure 20: RFID Antenna KTS Systeme PCBA1356 8

The antenna and the reader are connected with a SMA to U.FL. adapter cable.

5.2 RFID tag

The tag used in the prototype is of paper type (see fig.21) due to its added advantages as follows:

• The tags are cheap costing 18 cents each.

• It doesn’t require power supply.

• The tags are compact.

• The implementation in the time of plant extension is simple.

It’s working principle is based on inductive coupling with an operating frequency of 125-135 kHz
and a range of 10cm. The tags are fixed on the floor at known location as shown in fig.22.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 29

Figure 21: Paper Tag 1

Figure 22: Tags on the plant floor

5.3 Wifi Module

The WiFi module used is from WEMOS Co.[14].It is a mini WiFi board with 4MB flash based
on ESP-8266 which is a WiFi microchip with full IP/TCP stack and micro-controller (see fig.23).

Figure 23: WeMos D1 Mini WiFi Module 2

The WeMos module has the following features:

• 32-bit RISC microprocessor core running at 80 MHz

• External QSPI flash of 4 MB

• IEEE 802.11 b/g/n Wi-Fi

• 16 GPIO pins

• UART on dedicated pins, plus a transmit-only UART can be enabled on GPIO2

• 10-bit ADC and I2C (software implementation)
1Source: www.kurzweilai.net/scientists-print-cheap-rfid-tags-on-paper
2Source:www.github.com/mcauser/Fritzing-Part-WeMos-D1-Mini

www.kurzweilai.net/scientists-print-cheap-rfid-tags-on-paper
 www.github.com/mcauser/Fritzing-Part-WeMos-D1-Mini

Final report, Local positioning system pipeless plant, September 26, 2018 Page 30

5.4 Hardware Setup

Figure 24: Robot Hardware Schematic

The built-in Micro-controller on the robot receives the sensor data and sends commands to the
actuators via serial communication using its first UART pins. (TX/RX) is the process of sending
and propagating an analogue or digital information signal over a physical point-to-point wired
connection. It uses its second UART pins to communicate with the built-in WiFi Module. The
built-in WiFi Module sends the received sensors data to the Computer and sends the received
commands from the computer to the robot micro-controller via Wireless communication (see
fig.24). Due to its less complexity, more flexibility and that the robot’s in built micro-controller

Figure 25: Hardware Schematic

UART pins are in use, a new communication setup was developed for the RFID reader to send

Final report, Local positioning system pipeless plant, September 26, 2018 Page 31

the data from the robot to the computer in parallel to the robot hardware setup. As shown in
fig.25) the RFID reader is connected directly to the built-in micro-controller of the WeMos WiFi
Module via serial communication sending it the tags IDs. The WeMos WiFi Module sends the
received data through the network. The RFID reader is connected to the antenna which sends
and receives the radio waves via SMA antenna cable.
The RFID reader as well as WeMos Module are placed on the top of the robot while the Antenna
is fixed to the robot base such that the radio waves would be in direct contact with the tags on
the floor.

Figure 26: Top of the Robot Figure 27: Base of the Robot

Final report, Local positioning system pipeless plant, September 26, 2018 Page 32

6 Simulation

The simulation was carried out to answer important design questions before the real implemen-
tation phase. Furthermore, artificial RFID reader data was created to test and simulate the
algorithm, which will be explained in chapter 7.
To answer the design questions, the simulation has the following parameter (Appendix 11.1 Line
1-50):

• the size of the simulation space

• distance between the tags

• distance between the first/last row/column of tags and the boarder of the simulation space

• diameter of the robot

• position of the antenna related to the origin of the robot

• the relation between RSSI and the distance antenna and tag

• initial start position and orientation

• difference between the measurement points of the initialization procedure

• optional: cycle time and speed of the robot (for another procedure)

• logging parameter (look of the logged text file)

Foregone tests lead to a distance between the tags of 10 cm. This was founded on the fact that
in this case at least four tags are detected at the same time (maximum reading range of 14
cm). In this case around 121 tags are needed for every square meter. This is a realistic number
of tags for a small plant size, because it will lead to around 800 tags for the whole plant.

6.1 Emulator

To create artificial RFID reader data, the emulator must write all detected tags together with
information about the measuring point into a text file. During the initialization procedure,
which was the main focus in this project, the robot turns around 360 ◦ and makes measurements
every 45◦.
The emulator computes the distance from the center of the antenna to the neighbouring tags
at each measurement point. If a tag is closer than the maximal reading distance, the emulator
writes the detected ID of the tag together with its RSSI into the text file.
The RSSI is, as explained earlier, an integer value from 0...7. 0 defines in this case a distance
from 14 to around 10 cm from the antenna to the tag. In the first version of the emulator the
RSSI mentioned a consistent increasing of the RSSI while the distance between the tags and
the antenna gets smaller [15].

Final report, Local positioning system pipeless plant, September 26, 2018 Page 33

During own measurements it has been found out that this relation is inconsistent. Therefore
the second version of the emulator was updated and creates more realistic data.

6.2 RSSI Measurements with real hardware

The relation of the RSSI is not just related to the distance between the antenna and the tag.
It also depends on the orientation of the plain of the antenna and the tag. The tests with the
real hardware was performed in a setup where the tags were placed on a floor and the antenna
was parallel to the floor at a hight of 1.5 cm. The reason for this was the fact that the antenna
should be placed directly under the robot. Table. 8 and fig. 28 present the results of the
measurements.

RSSI
(Received Signal Strength Indicator)

0/0 1/1 2/2 3/3 4/4 5/5 6/6 7/7

Maximal distance
antenna to tag [cm]

14 9.8 9 8 7 6 3.5 2.8

Middle distance
antenna to tag [cm]

5 5.1 5.3 5.5 5.8 4 - -

Minimal distance
antenna to tag [cm]

- 4.7 4.5 4.3 4.2 - - -

Table 8: Relation between RSSI and distance antenna to tag (data)

Figure 28: Relation between RSSI and distance antenna to tag

Final report, Local positioning system pipeless plant, September 26, 2018 Page 34

Figure 28 demonstrates that there exists a blind spot at a distance of 5 cm where the RSSI
drops to 0. The consequence is that it is not trivial to build up a relation from the RSSI back
to the correct distance.

6.3 Simulation with emulated data

The idea of the final implementation is to estimate the initial position and orientation of the
robot. A first version of an algorithm to solve this problem is created in matlab. The first
part of these algorithm is the emulator which simulates the 360◦ turn and records the tag
information. The second part is the solver which is also explained in depth in the section 7.
After observing an inconsistent behaviour of the RSSI the simulation as well as the solver were
updated.

6.4 Results

The application of the emulated data on the solver indicates the following results:

Avg. accuracy position
(x-, & y-direction) [mm]

Avg. Accuracy
orientation [◦]

Data mentioned in paper 2 <1

Own recorded data (blind spot) 10 20

Table 9: Results Simulation

As can be seen from table. 9, there is a sufficient good match between the estimated position
and orientation of the robot for the consistent RSSI data. On the other hand the inconsistent
RSSI data results in significant differences in the estimation of the position and orientation of
the robot.
The reason for this is the higher complexity of the algorithm to first estimate the correct distances
related to RSSI values and then start to estimate the position based on those distances.
A small error in the estimation of the position of the antenna at the first measurement point
leads also to a big error in the computed orientation of the robot.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 35

7 Implementation

7.1 Communication

The already existing software is overwritten on the built-in micro-controller of the WeMos
Wifi Module which was developed to have a continuous listening to all the data sent from the
RFID reader even in case of no tags within the range. The complete and erroneous RFID data
readings are as seen in the fig.29.

Figure 29: RFID-WeMos Module Communication

Final report, Local positioning system pipeless plant, September 26, 2018 Page 36

A TCP-IP communication is established within the network on the WeMos WiFi Module that
start publishing the data which has been received from the reader. This communication is killed
if and only if in the case of robot shutdown as shown in fig.30.

Figure 30: WeMos Module Network Communication

Final report, Local positioning system pipeless plant, September 26, 2018 Page 37

While on the other side of computer GUI (Graphical User Interface), the similar communication
is being established (which should be on the same network) and should grasp all the data
that has been published by the WeMos WiFi module even if there exists no feedback. This
communication can be terminated on the GUI if required as shown in the fig.31.

Figure 31: Computer Network Communication

Final report, Local positioning system pipeless plant, September 26, 2018 Page 38

7.2 Initialization procedure

In the start-up phase, before running the pipeless plant with its AGVs, the correct position
and orientation of each and every vehicle are not known. Even though the controller is able to
compute the position of the AGVs antenna in each point of time (t=0 included), several AGV
positions in the plants operation space can be described by one single antenna position. In fig.
32 four possible AGV positions with one common antenna position are pointed out.

Figure 32: Different possible positions for one antenna position

Since the position information is crucial for the plant, a procedure was set up to determine
the starting positions of each and every AGV. According to the fact that the position and
orientation of a single AGV is unknown at the beginning, some potential hazards were taken
into account. For instance, the plant contains several obstacles like the mixing stations, vessel
storage, charging stations, plant edges and even other vehicles as represented in fig. 33.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 39

Figure 33: Possible hazards/obstacles

With respect to these potential hazards, collisions during the initialization procedure have to
be avoided. This is realized by taking advantage out of the AGVs ability to turn around its z
axis without a change of the AGVs center point in x and y direction. This ability of the AGV
leads the way that each and every robot performs an initialization turn of 360◦. During this
turn the reader takes measurments every 45◦ to estimate the specific positions and orientations
of the AGVs. Furthermore, the fact, that the position of the center point does not change
during a turn around its z axis, dominates the decision process of the antenna position under
the robot. During the 360◦ turn, the intervals of taking measurments need to be known by the
controller. The determination of these measurement points can be computed in two different
ways. On the one hand, the controller uses the encoders of the AGV-wheels to estimate the
performed rotation. On the other hand, the time of a complete turn is measured and used as
a parameter in the procedure. In terms of simplicity the algorithm includes the second option
during the initialization procedure. Fig. 34 illustrates a sequential flow chart which describes
the movement and data processing during the initialization procedure. The part of the code
which is explained and visualized by Fig. 34 is found in section 11.4

Final report, Local positioning system pipeless plant, September 26, 2018 Page 40

Figure 34: Flow Chart: Initial procedure 360◦ turn

The initialization procedure for AGV No. 1 is created and a button in the test environ-
ment starts the respective part of the algorithm. In the first place the user types an integer
number in the field called sleeptime. This integer number is interpretated as milliseconds and
describes the time of rotation. Even though a time for a complete turn of 45◦ has been found
at around 1125ms, it has to be said that this time strongly depends on the battery charge of
the AGV. After the desired turning time is given to the GUI, the initialization button, located
over the input box in fig. 35, starts the initalization procedure.

Figure 35: Test environment in GUI

In the second step, after the procedure was started, the RFID-Reader reads all the available
IDs and their respective RSSI in its current reading range. The reading is performed in

Final report, Local positioning system pipeless plant, September 26, 2018 Page 41

the Automatic Scan mode of the RFID reader[13]. With the included timestamp for every
measurement a delay of minimum 30ms between each tag information was detected. With
respect to this delay, the antenna stops a specific period of time at each measuring point to
deliver correct data of all the reachable tags. Experiences have shown that a measuring time
between one and two seconds delivers the best results. During this time, the controller recieves
new measurment information every 100 ms. In order to save the single tag information of
each and every measuring point, an initially empty array with 14 columns and 8 rows was
created. The number of rows is derived by the fact that the systems takes measuremtns every 45◦.

Rows = 360◦/45◦ = 8 (12)

(13)

The first seven columns in the array contain the received tag IDs and the last seven entries
describe the respective RSSI.
The number of columns is derived by the fact that at each and every measurement point in the
used test environment, information of maximal seven tags can be read.

Columns = max.no.oftags ∗ 2 = 7 ∗ 2 = 14 (14)

(15)

Once the received data is saved in its corresponding row, the AGV turns around 45◦and places
the antenna at the next measurment point. An AGV turn is realized by setting the velocity of
the right and left wheel in different directions. During the turning sections the velocity is set
to 100 mm/s or rather -100 mm/s. This procedure of reading information, writing information
in the initialization array and turning 45◦ to the next measuring point is repeating itself until
a 360◦ turn is performed. After a successful initialization turn, the corresponding array of
measurement information can look like the example in table 10. The code which realizes the
filling of the array can be seen in section 11.5

4 1 5 2 3 0 0 1 7 0

5 3 2 3

3 5 2 2

9 8 6 5 1 1 1 2

9 7 8 6 4 5 2 0 6 0 0 2

4 7 5 8 0 2 3 3

5 4 7 8 1 2 5 0 0 0

2 4 1 5 0 2 2 0

Table 10: Filled initalization array after 360◦ turn

Final report, Local positioning system pipeless plant, September 26, 2018 Page 42

7.2.1 Recording and filtering data

To read the ID and RSSI of all the tag laying in the reading range, the RFID-reader performs
in its Automatic mode and its Anticollision is switched on. In this mode the plans computer
recieves packages of strings with a length of 36 characters. Even though these 36 character
strings contain all the information of the tag which is needed the algorithm seperates the useful
parts and delivers them to the localization algorithm for further computations.
With exception of the information each string contains, the structure itself is always the same.
In the first five characters the substring “SCAN:” is detected and deleted for the further process.
The sixth slot of the string is the first important character. It contains either a “+” or a “-”.
With the help of this sixth slot it is distinglished whether the current reading is complete or not.
In order to guarantee the correctness of the received information the measurments are filtered
by the “+” and the measurments in which a “-” is included are ignored in the further processes.
After the indicator for complete and incomplete readings a introduction to the ID is indicated
by “UID= ” and cut out of the string. The next 16 characters define the unique identification of
the specific tag. As a last useless string, which has to be cut out, with the structure “.RSSI=”
is found directly after the ID. As a result the 16 character hexadecimal ID and its respective
RSSI are seperated from the received string. Since the ordered tag IDs differ each other just
in the last three numbers, these numbers are transformed in a decimal number before UID and
RSSI are used for further computations. The code which realizes the recording and filtering of
the data can be seen in section 11.2

String Transformation

Complete Incomplete

SCAN:+UID=E00401503A5BD691,+RSSI=0/0 SCAN:-UID=E00401503A5BDAE4

UID=E00401503A5BD691,+RSSI=0/0

E00401503A5BD691 0/0

1681 0

Table 11: String preperation

7.2.2 Analysing data

In the next step, the algorithm analyses the previously described filled array. To estimate the
position and orientation of the AGV, the array has to include two valid sets of each two valid
measuring points. During this analyzation, following restrictions validate the single measurement
point-sets:

• At the two valid measurement point each contains at least three tags.

• The other measurement point in one set needs to have a distance of 180◦ to the first.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 43

In terms of getting the adequate sets of measurment points the array is analyzed row by row.
The stepwise workflow is vizialized in fig. 36.
The code in which the analyzation is realized can be seen in section 11.6

Figure 36: Flow Chart: Analizing initialization measurment points

Initially the algorithm checks the first row which represents the measurement at the point 0◦

in terms of the number of readable tags. If this specific number is higher or equal three the
transition is acknowledged as true and the same query will be performed at the measurement
point with a distance of 180◦ to the former measurement point. If this next measurement
point can be described as valid, the first valid set of two measurement points is found. If,
on the other hand, the number of readable tag are less than three, which means that the
triangulation algorithm cannot be performed, the current measurement point is ignored and the
next measurement point is evaluated. Each of these sets of two measurement points is saved
as a 1x2 array called solution 1 and solution 2 is used for the estimation of the position of the
measurement points which is explained in the section 7.2.4 estimation of initial position and
orientation.

7.2.3 Selection of correct distance related to RSSI

In the first step, the multiple occurring data points (see table 8) are divided into three groups,
(max, middle and min) where max means the maximal possible distance related to one RSSI
and so on.
The measurements have shown that it is not trivial to define the correct distance related to most

Final report, Local positioning system pipeless plant, September 26, 2018 Page 44

of the RSSI. The involved algorithm selects the correct distance out of the multiple possible
solutions and is shown in fig. 37:

Figure 37: Flow Chart: Selection of correct distance and most proper IDs

To distinguish between the multiple possible solution for one RSSI, the algorithm defines the
shape of the pattern of tags based on the number of tags at each measurement and the number
of the neighbours each tag has. At each measurement point in this scenario several numbers
(4-7) of detected tags are possible. The different shapes can be found in the table 12.

Number of
detected tags

4 5 6 (Domino) 6 (2 alone) 7

Unique shapes

Table 12: Possible shapes of pattern

Final report, Local positioning system pipeless plant, September 26, 2018 Page 45

Going back to the flow chart fig.37 the first step is to count the number of neighbours each tag
has. With this information, the position of the tag in the pattern can be detected. For example,
a tag with 3 neighbours in a pattern of 5 tags, is the center of this pattern.
After the number of tags at each measurement point and the position of each tag are defined,
the selection of the correct distance will be performed based on the highest probability. To know
the highest probabilities an analysis of measurements with emulated data has been done.
As an example 4 detected tags are leading to the fact that the position of the antenna should be
very close to the center of this square. If in this case a RSSI of 4 is detected, the middle value
(5.8 cm) will be taken.
Afterwards the most suitable three IDs will be selected, in case where more then three are
detected. The algorithm takes at first the ID with the highest amount of neighbours, because
these tags are close to the position of the antenna and have probably a value of 6 or 7 and are
uniquely defined. In the case where several tags with the same number of neighbours, the first
ID (number increasing) will be taken.
The return of the function is an array (2x3) with the indices of the chosen IDs and the correct
distance. The correct distance will be indicated by the number 0,1 and 2. 0 means the maximal,
1 the middle and 2 the minimum possible value related to one RSSI. For example[

3 2 4
2 0 0

]
leads to the choice of the maximal value of the RSSI of the fourth detected ID and the minimum
value of the RSSI of the third and the fifth ID in the recorded array at this measurement point.

7.2.4 Estimation of initial position and orientation

As mentioned in chapter 7.2, the main idea to estimate the initial position is to find the inter-
section point, which lies in the middle of the measurement points.
To compute this position, the algorithm uses trilateration at every suitable measurement point
to estimate its position. For trilatertion are three defined positions plus three radii necessary,
which are available after the selection of the correct distance and proper IDs.

As follows from the fig.38 shown above, the intersection point is found by computing two linear
functions which go through two corresponding points (blue lines). The center of the robot is then
the intersection of those two linear functions and can be computed by the following equations:

x =
(x1y2 − y1x2)(x3 − x4)− (x1 − x2)(x3y4 − y3x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)
(16)

y =
(x1y2 − y1x2)(y3 − y4)− (y1 − y2)(x3y4 − y3x4)

(x1 − x2)(y3 − y4)− (y1 − y2)(x3 − x4)
(17)

Theoretically all eight measuring points are suitable points (at least four IDs found). But
for the case that the real measurements differ from the theory, the algorithm just needs four

Final report, Local positioning system pipeless plant, September 26, 2018 Page 46

Figure 38: Computing the center of the robot Figure 39: Orientation of robot in absolute angle

suitable points.
After the initial position as well as the positions of 4 measurement points are known, the
algorithm computes the orientation based on those information. The relative angle between the
center and the first measurement point will be computed with the arctan2 function and leads
to an orientation -180◦ < Θ ≤180◦ as shown in fig.39.
To compute the absolute angle, the angle of the measurement point has to be subtracted and
180◦ has to be added. This is caused by the fact that the antenna is placed on the back of the
robot and the absolute orientation should be the direction of the front. After this computation,
the initial position and orientation of the robot are known.

7.3 Test setup

In order to verify the validity of the initialization procedure, experiments with the components
mentioned in chapter 5 were carried out. The beginning of these experiments were the
reconstruction of one of the AGVs with this hardware setup. After all components were added
to the AGV the power supply was realized via a powerbank and the USB connection of then
wifi modul. The plan is to replace this in the future with a direct connection to the battery of
the AGV. Fig.40 gives an overview of the test setup and shows that also for the prototype, the
reader and the WiFi modul was just stuck with Sellotape on the upper layer of the AGV.

The test platform was a field of 9 tags which were stuck on a piece of carton. The IDs and its
positions are shown in table 13.

The reason for the small setup was the fact that until the end of the project only 10 tags were
available. One of the following steps should be to extend the platform with more tags.
The initialization procedure was started via the GUI. A time value was added in the GUI to
perform the 45◦ turns. This number was around 1125 ms and is highly correlated to the battery

Final report, Local positioning system pipeless plant, September 26, 2018 Page 47

Figure 40: testing setup for initialization procedure

X-dir. [mm] 0 100 200 0 100 200 0 100 200

Y-dir. [mm] 0 0 0 100 100 100 200 200 200

ID tag [hex] AE4 689 47A 586 785 ADC BF4 691 78D

ID tag [dec] 2788 1673 1146 1414 1925 2780 3060 1681 1933

Table 13: Positions of the IDs in the test setup

Final report, Local positioning system pipeless plant, September 26, 2018 Page 48

status of the AGV.

7.4 Results

A couple of tests on the test setup (previous section) were performed to compare the good
results created with the simulated data with real measurements. The result of the position
estimation was directly plotted in the console. The initial position was 200 mm in x- and
y-direction and a varying orientation (0◦, 90◦, 180◦ and -90◦). Fig.41 and fig.42 illustrate the
actual measurement results and the desired position in x- and y-direction.

Figure 41: Estimated position in x-direction

The average of the absolute error of the position in x-direction was 24.5 mm. The minimum
and maximum error were 2 mm and 72 mm.

Figure 42: Estimated position in y-direction

The average of the absolute error of the estimation of the position in y-direction is with 23.3
mm, a minimum error of 3 mm and an maximum error of 77 mm very similar to the results

Final report, Local positioning system pipeless plant, September 26, 2018 Page 49

from the estimation of the x-direction. The computation of the overall error of the position has
an average derivation of 37.5 mm and a minimum and maximum error of 6.3 mm and 77 mm.

Figure 43: Estimated orientation

For the estimation of the orientation, the average of the absolute error was 23◦ with a minimum
and a maximum value of 3.9◦ and 37.5◦. The measurements also shows that an estimation
of the position with a big error not necessarily leads to a big error in the estimation of the
orientation (see measurement 4 in fig.41, 42 and 43).
An extension of the results could also be an analyse of the estimated positions of the antenna
at the measurement points. Those points were also plotted in the console.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 50

8 Conclusion

The developed localization solution was for the pipeless plant, a prototype of a chemical produc-
tion plant which has a size of 3 by 4 m. In this plant the vessel will be transported by AGVs from
one station to another. In the actual setup only a camera, which is installed above the plant,
was used to detected the AGVs and estimate their positions. The problem with this technology
is the bad detection of the LED pattern from the AGVs during bright light conditions and also
the space limitation. Another big disadvantage is the big computation effort which makes the
system also very slow. The main task of this project was to find an alternative tracking solution.
During the project group phase differnt localization technologies were evaluated. With respect
to the outcoming reseaches about triangulation, map-based-localizaion, pattern recognizion and
localizaion via radio frequency identification the last RFID based localization of the AGV with
passive tags as landmarks turned out to be the most promising among those four. With infor-
mation of a similar project realized by the FH Dortmund a model to evaluate sample data and
a localization algorithm was created in Matlab. This results of the simulation were promising
and therefore used during the decision making process about the actual hardware setup. With
an demonstration board with the size of 30 cm x 30 cm the initialization procedure algorithm
was implemented in which the AGV performes and 360◦ turn and estimates its position and
its orientation based on measuremtns during this movement. With respect to this solutions it
can be said that it is possible to assemble a reader on an AGV and detect passive tags with its
antenna in a range of 14 cm. It also has been found out that an inconsistent realation between
the RSSI of the detected tags and the distance based on the RSSI is not generally trivial and
was only solved in a rather simple and unriliable way during the project. Based on the results
computed by the initializaion prcedure, it can be concluded that it is possible to estimate the
position of the AGV with an average accuracy of aroung 2.5 cm and an estimation error of the
orientation of around 23◦. Compared to the former localization set up this solutions, especially
with respect to the orientation error, are not perfelty satisfying and just minimal requirements
are fullfilled. The received data from the RFID reader have furthermore clearly shown that
the anti-collision algorithm used by the reader leads to an unknown amount of time until each
and every tag in the detection area is identified. Summed up a model based demonstrator was
realized which on the one hand does not improve the accuracy of the localizaion of the plant
under good light conditions especially with respect to the orientation but on the other hand a
promising technology for indoor localizaion with light independedcy, respectivelay cheap costs
and highly scalability was found.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 51

9 Future work

After a proof-of-concept for an RFID based localization system has been built and a first demon-
stration set-up has been created, the disadvantages and limitations of the prototype were eval-
uated. According to these results, several points of improvement and extension were found and
categorized into hardware and a software section.

9.1 Hardware

• The AGVs are fed by an included 12V battery which provides the power for all included
electronical devices. This 12V power supply is available on board and is suggested to be
used. Currently the WiFi-Module and the RFID-Reader are fed by an external powerbank
since a 5V power supply is needed. In terms of one centralized power supply, a 12 V to 5
V converter can be installed and connected to the reader and WiFi module.

• As a first setup, a demonstration area of 3 x 3 tags was build. In this rather small area, the
initializaion procedure was developed, but a real time localization while a path is followed
by an AGV was not possible since the 30cm x 30cm was simply to small. For futrue
research in terms of localisation on a specified path, additional tags can be included to the
area of operation. Since the RFID concept is highly scalable, the only change that needs
to be made in the algorithm is the insertion of the additional tag into the lookup table.

• Currently the robot no. 1 is the only AGV which is equipped with the RFID technology.
To run the plant with multible AGVs, the remaining robots needs to be upgraded.

9.2 Software

• During the initialising procedure a 360◦ turn is performed. The desired turn around 45◦ is
realized by a driving time of 1125 ms. But it needs to be said that this movement is highly
dependend on disturbances like changing battery charge and plant underground. For the
future developers it is suggested to use the encoders of the robot wheels as a determination
of the orientation instead of the parameter time.

• As an alternative localization technology was found several code lines in the current code
can be deleted since the camera and image processing is simply not used anymore. With
a clean code an improvement of processing time will be achieved.

• As a last point it can be said that even though a localization with RFID is now possible
the results are not 100 percent realiable and the accuracy especially with respect to the
orientation is not satisfying so far. As an improvement the triangulation algorithm has to
be optimized and or a second RFID-antenna has to be added under the AGV to reduce
measurment errors.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 52

10 References

References

[1] Yihuan Zhang Liang Wang and Jun Wang. Map-based localization method for autonomous
vehicles using 3d-lidar. IFAC (International Federation of Automatic Control) Hosting by
Elsevie, 50, 2017.

[2] Dr.-Ing. habil. Dipl.-Ing. Dipl.-Ing. Joerg Wollnack. Prinzip der dreidimensional messenden
videometrischen messsysteme.

[3] Jeremie Houssineau, Daniel Clark, Spela Ivekovic, Chee Sing Lee and Jose Franco. A unified
approach for multi-object triangulation, tracking and camera calibration.

[4] Matteo Munaro, Edmond Wai Yan So, Stefano Tonello, and Emanuele Menegatti. Efficient
completeness inspection using real-time 3d color reconstruction with a dual-laser triangu-
lation system. 48:201–225, 09 2015.

[5] Richard I. Hartley, Peter Sturm. Triangulation.

[6] F. Dias, H. Schafer, L. Natal, and C. Cardeira. Mobile robot localisation for indoor envi-
ronments based on ceiling pattern recognition. In 2015 IEEE International Conference on
Autonomous Robot Systems and Competitions, pages 65–70, 2015.

[7] Jun Liu Baoxian Zhang and Haoyao Chen. Amcl based map fusion for multi-robot slam with
heterogenous. IEEE International Conference on Information and Automation (ICIA), 6,
2013.

[8] ROS. Amcl, 2018.

[9] Yuntian Brian Bai, Suqin Wu, Hongren Wu, and Kefei Zhang. Overview of rfid-based indoor
positioning technology, 2012.

[10] Hanifa SHAH Kamran AHSAN and Paul KINGSTON. Rfid applications: An introductory
and exploratory study. International Journal of Computer Science Issues, 7(3), 2010.

[11] Vinita Sharma Ms.Neha Kamda and Sudhanshu Nayak. A survey paper on rfid technology,
its applications and classification of security/privacy attacks and solutions. IRACST -
International Journal of Computer Science and Information Technology & Security, 6(4),
2016.

[12] Pablo Cotera, Miguel Velazquez, David Cruz, Luis Medina, and Manuel Bandala. Indoor
robot positioning using an enhanced trilateration algorithm. International Journal of Ad-
vanced Robotic Systems, 13(3):110, 2016.

[13] KTS Systeme. Rfid plug module rfidm1356, 2017.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 53

[14] WEMOS. Wemos d1 mini, 2018.

[15] Christof Rohrig, Daniel Hess, and Frank Kunemund. Rfid-based localization of mobile
robots rfid-based localization of mobile robots using the received signal strength indicator
of detected tags.

Final report, Local positioning system pipeless plant, September 26, 2018 Page 54

11 Appendixes

11.1 Appendix A: Emulator RFID data (Matlab)

1 %% −−−
2 % Desc r ip t i on : Emulator , which c r e a t e s txt f i l e l i k e the reader
3 % RSSI r e l a t e d to the r e a l measurements
4 % For the I n i t i a l i z a t i o n procedure , turn around 360◦

5 % Date : 12 . 06 .2018
6 % Created by : Stephan Vette
7 % −−
8 %% RFID s i g n a l emulator
9 c l e a r a l l

10 c l c
11 c l o s e a l l
12 % I n i t i a l i z i n g
13 l 1 = 100 ; % length o f the plant , x [cm]
14 l 2 = l 1 ; % width o f the plant , y [cm]
15 d1 = 10 ; % d i s t ance between tags [cm]
16 d2 = 0 ; % d i s t ance l a s t tag <−> boarder [cm]
17 r1 = 14 ; % rad iu s o f the read ing range o f every tag
18 r2 = [r1 , 9 . 75 , 9 . 0 , 8 . 0 , 7 . 0 , 6 . 0 , 5 . 8 , 5 . 5 , 5 . 3 , 5 . 1 , 5 . 0 , 4 . 7 , 4 . 5 , 4 . 3 , 4 . 2 , 4 . 0 ,

3 . 5 , 2 . 75 , 0] ; % d i s t an c e s at c e r t a i n RSSI
19 r4 = [0 , 1 , 2 , 3 , 4 , 5 , 4 , 3 , 2 , 1 , 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 7] ; % array with the

d i f f e r e n t RSSI va lue s
20

21 r3 = 33/2 ; % rad iu s o f the robot
22 d3 = 10 ; % d i s t ance between o r i g i n robot and o r i g i n antenna [cm]
23

24 angle1 = 45 ; % angle between the measurement po in t s in the i n i t procedure
25

26 gamma1 = deg2rad (2 2 . 5) ; % Star t o r i e n t a t i o n o f robot [rad]
27 robStar t = [2 2 . 5 , 5 1 . 5] ; % Star t p o s i t i o n o f robot in x , y [cm]
28

29 robSpeed = 0 . 1 ; % Speed robot [m/ s]
30 cycleT = 100 ; % Cyclet ime in [ms]
31

32 mode = 1 ; % mode=1: t ra ck ing a l l a v a i l a b l e tags , which are nonzero
33 % mode=2: t ra ck ing only changes in the RSSI s i g n a l s
34 mode hex = 0 ; % ac t i v a t e or deac t i va t e hex ID
35

36 % For the name o f the txt f i l e
37 measuementeNumber = num2str (11) ; % Number o f measurement
38 % Two p o s s i b i l i t i e s f o r the content o f the txt f i l e
39 % 1. Without f i l t e r i n g . Exact ly l i k e the reader c r e a t e s data
40 % text0 = ’<\r > ’ ;
41 % text1 = ’OK’ ;
42 % text2 = ’SCAN:+UID= ’;
43 % text3 = ’+RSSI= ’;
44

45 % 2. F i l t e r e d data . Without unusable in fo rmat ion .
46 t ext0 = ’ ’ ;
47 t ext1 = ’ ’ ;
48 t ext2 = ’ ’ ;
49 t ext3 = ’ ’ ;
50 %% Error check
51 i f mod(l 1 /d1 , 1) ˜=0
52 e r r o r (’ Length o f p lat form not d i v i dab l e by d i s t ance between tags ’) ;
53 e l s e i f mod(l 2 /d1 , 1) ˜=0

Final report, Local positioning system pipeless plant, September 26, 2018 Page 55

54 e r r o r (’ Length o f p lat form not d i v i dab l e by d i s t ance between tags ’) ;
55 end
56

57 %% Computing po s i t i o n o f antenna
58 numTagsX = (l1−2∗d2) /d1 +1;
59 numTagsY = (l2−2∗d2) /d1 +1;
60 numTags = numTagsX ∗ numTagsY ;
61 antPos = robStar t + d3 ∗ [cos (gamma1) , s i n (gamma1)] ;
62

63 %% Display the setup , wr i t e important in fo rmat ion in to a s epe ra t e txt f i l e
64 d1 s t r = num2str (d1) ;
65 l 1 s t r = num2str (l 1) ;
66 l 2 s t r = num2str (l 2) ;
67 numTags str = num2str (numTags) ;
68

69 msg0 = [’Your plane i s ’ , l 1 s t r , ’cm x ’ , l 2 s t r , ’cm . ’] ;
70 msg1 = [’You chose a d i s t anc e o f ’ , d1 s t r , ’cm and need ’ , numTags str , ’ Tags ! ’] ;
71 di sp (msg0) ;
72 di sp (msg1) ;
73 nameTxt = [’NumTags ’ ,measuementeNumber , ’ . tx t ’] ;
74 fi leNumTags = fopen (nameTxt , ’w ’) ;
75 f p r i n t f (fileNumTags , ’%6d\n ’ ,numTags) ; % Write the number o f tags in f i l e
76 f p r i n t f (fileNumTags , ’%6d\n ’ , l 1) ; % Write the s i z e o f the p lant in f i l e
77 f p r i n t f (fileNumTags , ’%6.4 f \n ’ ,gamma1) ; % Write the s t a r t i n g ang le
78 f p r i n t f (fileNumTags , ’%6d\n ’ , robStar t (1)) ; % Write the s t a r t i n g pos
79 f p r i n t f (fileNumTags , ’%6d\n ’ , robStar t (2)) ; % Write the s t a r t i n g pos
80 f c l o s e (fileNumTags) ;
81

82

83 %% Drawing environment
84 f i g u r e (1)
85 x1 = [0 l 1 l 1 0 0] ;
86 y1 = [0 0 l 2 l 2 0] ;
87 p lo t (x1 , y1 , ’ LineWidth ’ , 2)
88 xlim ([−5 (l 1+5)]) ;
89 ylim ([−5 (l 2+5)]) ;
90 hold on
91

92 % Pos i t i on o f the tags
93 ID = 1 : numTags ;
94 [Tagx , Tagy] = meshgrid (d2 : d1 : l1−d2 , d2 : d1 : l2−d2) ;
95 p lo t (Tagx , Tagy , ’ r ∗ ’)
96 % Ci r c l e s
97 r a d i i p l = ones (numTagsX , 1) ∗ r1 ;
98 f o r k=1:numTagsX
99 tempx = Tagx (1 : end , k) ;

100 tempy = Tagy (1 : end , k) ;
101 temppos = horzcat (tempx , tempy) ;
102 v i s c i r c l e s (temppos , r a d i i p l , ’ Color ’ , ’ k ’ , ’ L ineSty l e ’ , ’ : ’ , ’ LineWidth ’ , 0 . 2 5) ;
103 end
104 robX = robStar t (1) ;
105 robY = robStar t (2) ;
106 p lo t (robX , robY , ’bO ’ , ’ LineWidth ’ , 3) ;
107 p lo t (robX , robY , ’ r : ’) ;
108 v i s c i r c l e s ([robX , robY] , r3 , ’ Color ’ , ’ k ’ , ’ LineWidth ’ , 0 . 2 5) ;
109 p lo t (antPos (1) , antPos (2) , ’ bs ’) ;
110 x l ab e l (’ Length plat form in cm ’)
111 y l ab e l (’Width plat form in cm ’)
112 t i t l e ({ ’ Po s i t i on and read ing range o f tags ’ ; ’ Start −, endpoint and path o f the robot ’ }) ;

Final report, Local positioning system pipeless plant, September 26, 2018 Page 56

113 hold o f f
114 pause (1)
115

116 %% Animation and l ogg i n
117 xUpdateAnt = antPos (1) ;
118 yUpdateAnt = antPos (2) ;
119 deltaR = deg2rad (angle1) ; % A new measurement a f t e r every XX◦

120 % Txt f i l e name
121 name = [’ Mea s S t a r t i n gP r o c l i k e r e ad e r r e a l d a t a ’ ,measuementeNumber , ’ . txt ’] ;
122 f i l e ID = fopen (name , ’w ’) ;
123

124 % Data s to r ed in v a r i a b l e s
125 dataRSSI = ze ro s (8 , numTags) ;
126 streamDataRSSI = ze ro s (1 , numTags) ;
127 streamDataRSSIold = ze ro s (1 , numTags) ;
128 t imeStep = 1 ; % cur rent measurement s tep
129

130 % antPos = robStar t + d3 ∗ [cos (gamma1) , s i n (gamma1)] ;
131 f i g u r e (2)
132 f o r l =0:360/ angle1
133 deltaR temp = deltaR ∗ l ;
134 xUpdateAnt = robStar t (1) + d3 ∗ cos (gamma1 + deltaR temp) ;
135 yUpdateAnt = robStar t (2) + d3 ∗ s i n (gamma1 + deltaR temp) ;
136 p lo t (x1 , y1 , ’ LineWidth ’ , 2)
137 hold on
138 xlim ([−5 (l 1+5)]) ;
139 ylim ([−5 (l 2+5)]) ;
140 [Tagx , Tagy] = meshgrid (d2 : d1 : l1−d2 , d2 : d1 : l2−d2) ;
141 p lo t (Tagx , Tagy , ’ r ∗ ’)
142 p lo t (robX , robY , ’bO ’ , ’ LineWidth ’ , 1) ;
143 p lo t (robX , robY , ’ r : ’) ;
144 p lo t (xUpdateAnt , yUpdateAnt , ’ bs ’) ;
145 xlim ([−5 (l 1+5)]) ;
146 ylim ([−5 (l 2+5)]) ;
147 v i s c i r c l e s ([robX , robY] , r3 , ’ Color ’ , ’ b ’ , ’ LineWidth ’ , 0 . 5) ;
148 f o r k=1:numTagsX
149 tempx = Tagx (1 : end , k) ;
150 tempy = Tagy (1 : end , k) ;
151 temppos = horzcat (tempx , tempy) ;
152 v i s c i r c l e s (temppos , r a d i i p l , ’ Color ’ , ’ k ’ , ’ L ineSty l e ’ , ’ : ’ , ’ LineWidth ’ , 0 . 2 5) ;
153 end
154 hold o f f
155

156 % Creat ing measurements
157 antPosnew=[xUpdateAnt , yUpdateAnt] ;
158 f o r m = 1 : numTags % m = current number o f tag
159 m str = num2str (m) ;
160 tempTag=[Tagx(m) ,Tagy(m)] ;
161 tempD = pd i s t ([antPosnew ; tempTag] , ’ euc l i d ean ’) ;
162

163 % Display i f tag i s in range or not
164 i f tempD > r1
165 streamDataRSSI (m) = 0 ;
166 i f (streamDataRSSI (m) ˜= streamDataRSSIold (m)) && mode == 2
167 i f mode hex == 1
168 f p r i n t f (f i l e ID , ’%d %s%s%s%d%s \n ’ , l ∗ angle1 , text2 , dec2hex (m, 16) ,

text3 , k (end) , t ext0) ;
169 e l s e i f mode hex == 0
170 f p r i n t f (f i l e ID , ’%d %s%d%s%d%s \n ’ , l ∗ angle1 , text2 ,m, text3 , k (end) ,

Final report, Local positioning system pipeless plant, September 26, 2018 Page 57

t ext0) ;
171 end
172 f p r i n t f (’ %d %d %1d\n ’ , l ∗ angle1 ,m, ’ 0 ’) ;
173 end
174 e l s e i f tempD <= r1
175 % disp ([’ Label ’ , m str , ’ in range ! ! ! ! ! ! ! ! ! ! ! ! ! ’]) ;
176 % Relat ion d i s t ance <−> RSSI
177 k temp = f ind (r2>=tempD) ;
178 k = r4 (k temp) ;
179 dataRSSI (timeStep ,m) = k(end) ;
180 streamDataRSSI (m) = k(end) ;
181 i f (streamDataRSSI (m) ˜= streamDataRSSIold (m)) && mode == 2
182 i f mode hex == 1
183 f p r i n t f (f i l e ID , ’%d %s%s%s%d%s \n ’ , l ∗ angle1 , text2 , dec2hex (m, 16) ,

text3 , k (end) , t ext0) ;
184 e l s e i f mode hex == 0
185 f p r i n t f (f i l e ID , ’%d %s%d%s%d%s \n ’ , l ∗ angle1 , text2 ,m, text3 , k (end) ,

t ext0) ;
186 end
187 f p r i n t f (’ %d %d %8d ,\n ’ , l ∗ angle1 ,m, k (end)) ;
188 e l s e i f mode == 1
189 i f mode hex == 1
190 f p r i n t f (f i l e ID , ’%d %s%s%s%d%s \n ’ , l ∗ angle1 , text2 , dec2hex (m, 16) ,

text3 , k (end) , t ext0) ;
191 e l s e i f mode hex == 0
192 f p r i n t f (f i l e ID , ’%d %s%d%s%d%s \n ’ , l ∗ angle1 , text2 ,m, text3 , k (end) ,

t ext0) ;
193 end
194 f p r i n t f (’ %d %d %1d ,\n ’ , l ∗ angle1 ,m, k (end)) ;
195 end
196 end
197 end
198 streamDataRSSIold = streamDataRSSI ;
199 pause (cycleT /1000)
200 t imeStep = timeStep + 1 ;
201 end
202 s a v e f i g (’ Figure2 . f i g ’) ;
203 f c l o s e (f i l e ID) ;
204

205 %% Resu l t s
206 % f i g u r e (3) % p lo t f o r the max value o f every tag
207 % dataRSSInoT = reshape (max(dataRSSI) , [numTagsX , numTagsY]) ;
208 % plot3 (Tagx , Tagy , dataRSSInoT , ’ ∗ ’) ;
209 % x labe l (’ Length plat form in cm’)
210 % y labe l (’Width plat form in cm’)
211 % t i t l e (’Max RSSI s i g n a l o f every tag ’)
212

213 f i g u r e (4) % p lo t o f the RSSI s i g n a l which are non zero vs . time
214 dataRSSIsum = sum(dataRSSI) ;
215 IDc l ear = f i nd (dataRSSIsum ˜= 0) ;
216 IDstr = s t r i n g (IDc l ea r) ;
217 dataRSSIc lear = dataRSSI ;
218 dataRSSIc lear (: , a l l (˜any (dataRSSI) , 1)) = [] ; % and columns
219 p lo t (dataRSSIc lear) ;
220 x l ab e l (’Measurement po in t s ’)
221 y l ab e l (’RSSI ’)
222 ylim ([0 360/ angle1])
223 l egend (IDstr , ’ FontSize ’ , 6) ;
224 t i t l e (’RSSI S igna l o f every non zero tag ’)

Final report, Local positioning system pipeless plant, September 26, 2018 Page 58

11.2 Appendix B: Receiving data from reader via Wifi (C#)

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Text;

5 using System.Windows;

6 using System.IO;

7 using System.Threading;

8 using System.Net;

9 using System.Net.Sockets;

10 using MULTIFORM_PCS.ControlModules.SchedulingModule;

11 using MULTIFORM_PCS.ControlModules.FeedForwadModule;

12 using MULTIFORM_PCS.ControlModules.RoutingModule.PathAndVelocityPlanning.

DataTypes;

13 using MULTIFORM_PCS.ControlModules.CameraModule.CameraForm;

14 using MULTIFORM_PCS.ControlModules.CameraControl.CameraControlClass;

15 using System.Windows.Threading;

16 using System.Diagnostics; // Process

17 using System.Globalization;

18 using Emgu.CV.WPF;

19 using System.Threading.Tasks;

20 using System.Collections.Concurrent;

21

22 namespace MULTIFORM_PCS.ControlModules.RFID

23 {

24 public class receive

25 {

26 public string [] availablearray=new string [1];

27 public void connect ()

28 {

29 try

30 {

31 Console.WriteLine("Connecting");

32 TcpClient tcpClient = new TcpClient("192.168.0.100", 8883);

33 if (tcpClient.Connected)

34 {

35 Console.WriteLine("Connected to server");

36 }

37 }

38 catch (Exception e)

39 {

40 Console.WriteLine("Connection Failed");

41 }

42 }

43

44 public void reading(CancellationToken ct)

45 {

46 if (ct.IsCancellationRequested == true)

47 {

48 ct.ThrowIfCancellationRequested ();

Final report, Local positioning system pipeless plant, September 26, 2018 Page 59

49 }

50

51 Console.WriteLine("Connecting");

52 TcpClient tcpClient = new TcpClient("192.168.0.100", 8883);

53

54 if (tcpClient.Connected)

55 {

56 Console.WriteLine("Connected to server");

57 }

58

59 using (StreamReader STR = new StreamReader(tcpClient.GetStream ()))

60 {

61 string recieve;

62 char[] trash = new char [16];

63 char[] UID = new char [3];

64 char[] RSSI = new char [3];

65 long milliseconds , seconds , minutes;

66 string UID_ , RSSI_ , RSSI___;

67 string [] array = new string [1];

68

69 List <string > RSSI__;

70 int UID_DEC =0;

71 int RSSI_int = 0;

72

73 while ((recieve = STR.ReadLine ()) != null && !ct.

IsCancellationRequested)

74 {

75 if (ct.IsCancellationRequested)

76 {

77 try

78 {

79 ct.ThrowIfCancellationRequested ();

80 }

81 catch (AggregateException e)

82 {

83 }

84 }

85

86 if (recieve.Contains("+"))

87 {

88

89 List <string > Worte = recieve.Split(new string [] { "OK",

" <\\r>", "\n", "", "SCAN:+UID=", "+RSSI=" },

StringSplitOptions.RemoveEmptyEntries).ToList ();

90 string Wort = string.Join("", Worte.ToArray ());

91

92 using (StringReader sr = new StringReader(Wort))

93 {

94 sr.Read(trash , 0, 13);

95 sr.Read(UID , 0, 3);

96 UID_ = new string(UID);

Final report, Local positioning system pipeless plant, September 26, 2018 Page 60

97 sr.Read(trash , 0, 1);

98 sr.Read(RSSI , 0, 1);

99 RSSI_ = new string(RSSI);

100 try

101 {

102 UID_DEC = Int32.Parse(UID_ , System.Globalization

.NumberStyles.HexNumber);

103 }

104 catch (Exception e)

105 {

106 }

107 }

108

109 RSSI__ = RSSI_.Split(new string [] { "," },

StringSplitOptions.RemoveEmptyEntries).ToList ();

110 RSSI___ = string.Join("", RSSI__.ToArray ());

111 try

112 {

113 RSSI_int = Int32.Parse(RSSI___);

114 }

115 catch (Exception e)

116 {

117 }

118

119 milliseconds = DateTimeOffset.Now.Millisecond;

120 seconds = DateTimeOffset.Now.Second;

121 minutes = DateTimeOffset.Now.Minute;

122 array [0] = minutes + " " + seconds + " " + milliseconds

+ " " + UID_DEC + " " + RSSI_int;

123 //File.AppendAllText(AppDomain.CurrentDomain.

BaseDirectory + "\\ pythonfiles \\ python_1robot \\

RFID_Data.log", minutes + " " + seconds + " " +

milliseconds + "\t UID: " + UID_ + " RSSI: " +

RSSI___ + "\r");

124 //File.AppendAllText(AppDomain.CurrentDomain.

BaseDirectory + "\\ pythonfiles \\ python_1robot \\

RFID_Data_original.log", hour + ":" + minutes + ":"

+ seconds + ":" + milliseconds + "\t" + recieve + "\

r");

125 // Console.WriteLine(minutes + " " + seconds + " " +

milliseconds + "\t" + " " + UID_ + " " + RSSI___);

126 }

127 this.availablearray [0] = array [0];

128 }

129 }

130 }

131

132

133

134 public void disconnect ()

135 {

Final report, Local positioning system pipeless plant, September 26, 2018 Page 61

136 TcpClient tcpClient = new TcpClient ();

137 tcpClient.Connect("192.168.0.100", 8883);

138 tcpClient.Close();

139

140 }

141 }

142 }

Final report, Local positioning system pipeless plant, September 26, 2018 Page 62

11.3 Appendix C: Initialization procedure (C#)

1 using System;

2 using System.Collections.Generic;

3 using System.Linq;

4 using System.Text;

5 using MULTIFORM_PCS.ControlModules.CameraModule.CameraForm;

6 using System.Threading;

7 using MULTIFORM_PCS.GUI;

8 using MULTIFORM_PCS.Gateway.ConnectionModule;

9 using MULTIFORM_PCS.ControlModules.RFID;

10 using System.Threading.Tasks;

11 using System.Collections;

12

13 namespace MULTIFORM_PCS.ControlModules.MPCModule

14 {

15 public class Position

16 {

17 public int X = 0;

18 public int Y = 0;

19 }

20

21 public class PositionD

22 {

23 public double X = 0;

24 public double Y = 0;

25 }

26

27 class Init

28 {

29 //See Appendix D - I

30 }

31 }

11.4 Appendix D: Initialization turn and recording Data(C#)

1

2 public static void initialize(Int32 time)

3 {

4 int messungen = 100;

5 // Gateway.ConnectionModule.ConnectionCTRLModule.getInstance ().

setCTRLForRobot (0, 0.0, 100.0 , 0.0, 8.0, 0.0, 0.0, 3.0);

6 receive initial = new receive (); // Create a new instance of

class Receive

7 var tokenSource = new CancellationTokenSource ();

8 var token = tokenSource.Token;

9 Init compare = new Init();

10 string [] rfid_signals = new string[messungen];

11 int currentRobot = 0;

12 int[] RobotAssingment = new int[] { 0, 1, 3 };

13 Gateway.CTRLModule.getInstance ().camCtrl.

processFrameAndUpdateGUI ();

Final report, Local positioning system pipeless plant, September 26, 2018 Page 63

14 RobotDiscription [] RobotArray = new RobotDiscription [] { Gateway

.CTRLModule.getInstance ().camCtrl.RobotA , Gateway.CTRLModule

.getInstance ().camCtrl.RobotB ,

15 Gateway.CTRLModule.getInstance ().camCtrl.RobotC };

16 double [][] velocity1 = new double[RobotArray.Length][];

17 string[,] Signals = new string[messungen ,8];

18 velocity1[currentRobot] = new double [] { 0, 0 }; // Starts the

Robot

19 Gateway.CTRLModule.getInstance ().getRobotRemoteCTRL(

RobotAssingment[currentRobot]).forward(velocity1[

currentRobot], 0, 0, 0); //Sends velocity to Robot

20 // Opening a new Task which works in the background to read data

from RFID Antenna

21 Task t = Task.Factory.StartNew (() => initial.reading(token));

22 Thread.Sleep (1000);

23 for (int i = 0; i < 8; i++) //9 Because of 8 measurements

every 45 degree

24 {

25 for (int j = 0; j < messungen; j++) //in this for loop we

find all the reachable TAGs

26 {

27 Signals[j, i] = initial.availablearray [0];

28 Thread.Sleep (100);

29 }

30 velocity1[currentRobot] = new double [] { 100, -100 }; //

Starts the Robot

31 Gateway.CTRLModule.getInstance ().getRobotRemoteCTRL(

RobotAssingment[currentRobot]).forward(velocity1[

currentRobot], 0, 0, 0); // Sends velocity to Robot

32 Thread.Sleep(time); //time the robot needs for a 45 degree

turn

33 velocity1[currentRobot] = new double [] { 0, 0 }; //Stops

the Robot

34 Gateway.CTRLModule.getInstance ().getRobotRemoteCTRL(

RobotAssingment[currentRobot]).forward(velocity1[

currentRobot], 0, 0, 0); // Sends velocity to Robot

35 }

36

37 tokenSource.Cancel (); //close the reading Thread

38 try

39 {

40 Task.WaitAll(t);

41 }

42 catch (AggregateException e)

43 {

44 }

45 finally

46 {

47 tokenSource.Dispose ();

48 }

49 Console.WriteLine("END\r\r");

Final report, Local positioning system pipeless plant, September 26, 2018 Page 64

50

51 Array [] Liste = new Array [8]; //List of arrays each array in the

array contains the data of a special position (45 Â◦ , 90 Â◦ ,...)

52 string[,] Init_array = new string[8, 14]; // Array filled with

signal strengthes and ID of every degree position

53 string temp_ID="begin", temp_RSSI; // Substrings of Data

54 int counter; // Counter for the row in the Init_Array

55 Console.WriteLine("");

11.5 Appendix E: Filling Array(C#)

1 for (int j = 0; j < 8; j++)// converting UID to the specific decimal numbers in

lookup table

2 {

3 counter = 0;

4 for (int i = 0; i < messungen; i++)

5 {

6 try

7 {

8 temp_ID = Signals[i, j]. Substring(Signals[i, j]. Length -

6, 4); // seperatiion of UID in the string

9 if (temp_ID == "2788")

10 {

11 temp_ID = "1";

12 }

13 if (temp_ID == "1414")

14 {

15 temp_ID = "2";

16 }

17 if (temp_ID == "3060")

18 {

19 temp_ID = "3";

20 }

21 if (temp_ID == "1673")

22 {

23 temp_ID = "4";

24 }

25 if (temp_ID == "1925" || temp_ID == "1025")

26 {

27 temp_ID = "5";

28 }

29 if (temp_ID == "1681")

30 {

31 temp_ID = "6";

32 }

33 if (temp_ID == "1146")

34 {

35 temp_ID = "7";

36 }

37 if (temp_ID == "2780")

38 {

39 temp_ID = "8";

Final report, Local positioning system pipeless plant, September 26, 2018 Page 65

40 }

41 if (temp_ID == "1933")

42 {

43 temp_ID = "9";

44 }

45 }

46 catch (AggregateException e)

47 {

48 Console.WriteLine("Array incomplete");

49 }

50

51 temp_RSSI = Signals[i, j]. Substring(Signals[i, j]. Length -

1, 1); // seperation of RSSI in the string

52 if (temp_ID != Init_array[j, 0] && temp_ID != Init_array[j,

1] && temp_ID != Init_array[j, 2] && temp_ID !=

Init_array[j, 3] && temp_ID != Init_array[j, 4] &&

temp_ID != Init_array[j, 5] && temp_ID != Init_array[j,

6] && temp_ID != Init_array[j, 7]) //check if the UID

already exists in the Init_array

53 {

54 // Filling Init_Array

55 Init_array[j, counter] = temp_ID;

56 Init_array[j, counter + 7] = temp_RSSI;

57 counter ++;

58 }

59 }

60 }

11.6 Appendix F: Checking for solutions in array(C#)

1 int rowLength = Init_array.GetLength (0);

2 int colLength = Init_array.GetLength (1);

3 string str;

4 string headline = "|" + "ID 1" + "|" + "ID 2" + "|" + "ID 3" + "

|" + "ID 4" + "|" + "ID 5" + "| " + "ID 6" + "|" + "ID 7" +

"|" + "ST 1" + "|" + "ST 2" + "|" + "ST 3" + "|" + "ST 4" +

"|" + "ST 5" + "|" + "ST 6" + "|" + "ST 7" + "|";

5 System.Console.WriteLine(headline);

6

7 for (int k = 0; k < rowLength; k++)

8 {

9 str = "|" + Init_array[k, 0] + " |" + Init_array[k, 1] + "

|" + Init_array[k, 2] + " |" + Init_array[k, 3] + "

|" + Init_array[k, 4] + " |" + Init_array[k, 5] + "

|" + Init_array[k, 6] + " |" + Init_array[k, 7] + "

|" + Init_array[k, 8] + " |" + Init_array[k, 9] + "

|" + Init_array[k, 10] + " |" + Init_array[k, 11] +

" |" + Init_array[k, 12] + " |" + Init_array[k, 13]

+ " |";

10 System.Console.WriteLine(str);

11 }

12

Final report, Local positioning system pipeless plant, September 26, 2018 Page 66

13 // Solver

14 // Different Positions

15 Position Starting = new Position ();

16 Position Antenna1 = new Position ();

17 Position Antenna2 = new Position ();

18 Position Antenna3 = new Position ();

19 Position Antenna4 = new Position ();

20

21 // Initialization for Position estimation

22 float m1 = 0.000f;

23 float m2 = 0.000f;

24

25 float RobStartx_fl = 0.000f;

26 float RobStarty_fl = 0.000f;

27

28 double angle;

29 double angleTemp;

30

31 int null_counter = 0;

32 int[] check_row = new int [8];

33 for (int m = 0; m < rowLength; m++)

34 {

35 null_counter = 0;

36 for (int n = 0; n < 7; n++)

37 {

38 if (Init_array[m, n] == null)

39 {

40 null_counter ++;

41 }

42 }

43 check_row[m] = 7 - null_counter; //Array of elements with

the number empty places of each init_array row

44 System.Console.WriteLine("The number of elements at " + m *

45 + " Â◦ is: \t" + check_row[m]);

45 }

46 bool solution_found = false; //true if initialization process

is solvable

47 bool solution1_found = false; //true if one possible point is

found

48 bool solution2_found = false; //true if two possible points

are found

49 int count = 0;

50 int[] solution1 = new int [2]; // Array with the both degree

numbers of solution 1

51 int[] solution2 = new int [2]; // Array with the both degree

numbers of solution 2

52 while (solution_found == false)

53 {

54 while (solution1_found == false)

55 {

56 if (check_row[count] >= 3)

Final report, Local positioning system pipeless plant, September 26, 2018 Page 67

57 {

58 if (check_row[count + 4] >= 3)

59 {

60 solution1 [0] = count;

61 solution1 [1] = count + 4;

62 break;

63 }

64 if (count >= 2) //if we reach the 180 degree

there will be no solution for this

initialization turn

65 {

66 System.Console.WriteLine("NO SOLUTION FOUND !!!")

;

67 break;

68 }

69 }

70 count ++;

71 }

72 System.Console.WriteLine(count);

73 count = count + 1;

74 while (solution2_found == false)

75 {

76 if (check_row[count] >= 3)

77 {

78 if (count >= 8)

79 {

80 Console.WriteLine("Out of Range Exception caused

in Array: count");

81 }

82 if (check_row[count + 4] >= 3)

83 {

84 solution2 [0] = count;

85 solution2 [1] = count + 4;

86 solution_found = true;

87 break;

88 }

89 if (count >= 3) //if we reach the 180 degree

there will be no solution for this

initialization turn

90 {

91 System.Console.WriteLine("NO SOLUTION FOUND !!!")

;

92 break;

93 }

94 else

95 {

96 // count = count - 1;

97 break;

98 }

99 }

100 }

Final report, Local positioning system pipeless plant, September 26, 2018 Page 68

101 System.Console.WriteLine("Solution No. 1 found at: " +

solution1 [0] * 45 + " degree -- " + solution1 [1] * 45 +

" degree");

102 System.Console.WriteLine("Solution No. 2 found at: " +

solution2 [0] * 45 + " degree -- " + solution2 [1] * 45 +

" degree");

103 }

11.7 Appendix G: Position and orientation estimation(C#)

1 // Providing the distance with the highest probability

2 // Input: # of tags , all IDs of the tags

3 // Output: best fitting IDs (e.g.[3 4 5] if 3rd, 4th and 5th

are best ones)

4 // the correct distance <-> RSSI signal (e.g.[2 1 3]

for middle , max and min)

5 int[,] best_arr1 = new int[2, 3];

6 int[,] best_arr2 = new int[2, 3];

7 int[,] best_arr3 = new int[2, 3];

8 int[,] best_arr4 = new int[2, 3];

9

10 int[] temp_input1 = new int [7];

11 int[] temp_input2 = new int [7];

12 int[] temp_input3 = new int [7];

13 int[] temp_input4 = new int [7];

14

15 int[] temp_inputRSSI1 = new int [7];

16 int[] temp_inputRSSI2 = new int [7];

17 int[] temp_inputRSSI3 = new int [7];

18 int[] temp_inputRSSI4 = new int [7];

19

20 for (int i = 0; i < 8; i++)

21 {

22 for (int j = 0; j < 14; j++)

23 {

24 if (Init_array[i, j] == null)

25 {

26 Init_array[i, j] = "0";

27 }

28 }

29 }

30

31 for (int m = 0; m < 7; m++)

32 {

33 temp_input1[m] = Int32.Parse(Init_array[solution1 [0], m]);

34 temp_input2[m] = Int32.Parse(Init_array[solution1 [1], m]);

35 temp_input3[m] = Int32.Parse(Init_array[solution2 [0], m]);

36 temp_input4[m] = Int32.Parse(Init_array[solution2 [1], m]);

37

38 temp_inputRSSI1[m] = Int32.Parse(Init_array[solution1 [0], m

+ 7]);

Final report, Local positioning system pipeless plant, September 26, 2018 Page 69

39 temp_inputRSSI2[m] = Int32.Parse(Init_array[solution1 [1], m

+ 7]);

40 temp_inputRSSI3[m] = Int32.Parse(Init_array[solution2 [0], m

+ 7]);

41 temp_inputRSSI4[m] = Int32.Parse(Init_array[solution2 [1], m

+ 7]);

42 }

43

44 best_arr1 = CorrectID_Distance(temp_input1 , temp_inputRSSI1 ,

check_row[solution1 [0]]);

45 best_arr2 = CorrectID_Distance(temp_input2 , temp_inputRSSI2 ,

check_row[solution1 [1]]);

46 best_arr3 = CorrectID_Distance(temp_input3 , temp_inputRSSI3 ,

check_row[solution2 [0]]);

47 best_arr4 = CorrectID_Distance(temp_input4 , temp_inputRSSI4 ,

check_row[solution2 [1]]);

48

49 // Position of the antennae

50 Antenna1 = Trilateration(IDtoPOS(Int32.Parse(Init_array[

solution1 [0], best_arr1[0, 0]])), IDtoPOS(Int32.Parse(

Init_array[solution1 [0], best_arr1[0, 1]])),

51 IDtoPOS(Int32.Parse(Init_array[solution1

[0], best_arr1 [0, 2]])), Int32.Parse

(Init_array[solution1 [0], best_arr1

[0, 0] + 7]),

52 Int32.Parse(Init_array[solution1 [0],

best_arr1[0, 1] + 7]), Int32.Parse(

Init_array[solution1 [0], best_arr1

[0, 2] + 7]),

53 best_arr1 [1, 0], best_arr1[1, 1],

best_arr1[1, 2]);

54

55 Antenna2 = Trilateration(IDtoPOS(Int32.Parse(Init_array[

solution1 [1], best_arr2[0, 0]])), IDtoPOS(Int32.Parse(

Init_array[solution1 [1], best_arr2[0, 1]])),

56 IDtoPOS(Int32.Parse(Init_array[solution1

[1], best_arr2 [0, 2]])), Int32.Parse

(Init_array[solution1 [1], best_arr2

[0, 0] + 7]),

57 Int32.Parse(Init_array[solution1 [1],

best_arr2[0, 1] + 7]), Int32.Parse(

Init_array[solution1 [1], best_arr2

[0, 2] + 7]),

58 best_arr2 [1, 0], best_arr2[1, 1],

best_arr2[1, 2]);

59

60 Antenna3 = Trilateration(IDtoPOS(Int32.Parse(Init_array[

solution2 [0], best_arr3[0, 0]])), IDtoPOS(Int32.Parse(

Init_array[solution2 [0], best_arr3[0, 1]])),

61 IDtoPOS(Int32.Parse(Init_array[solution2

[0], best_arr3 [0, 2]])), Int32.Parse

Final report, Local positioning system pipeless plant, September 26, 2018 Page 70

(Init_array[solution2 [0], best_arr3

[0, 0] + 7]),

62 Int32.Parse(Init_array[solution2 [0],

best_arr3[0, 1] + 7]), Int32.Parse(

Init_array[solution2 [0], best_arr3

[0, 2] + 7]),

63 best_arr3 [1, 0], best_arr3[1, 1],

best_arr3[1, 2]);

64

65 Antenna4 = Trilateration(IDtoPOS(Int32.Parse(Init_array[

solution2 [1], best_arr4[0, 0]])), IDtoPOS(Int32.Parse(

Init_array[solution2 [1], best_arr4[0, 1]])),

66 IDtoPOS(Int32.Parse(Init_array[solution2

[1], best_arr4 [0, 2]])), Int32.Parse

(Init_array[solution2 [1], best_arr4

[0, 0] + 7]),

67 Int32.Parse(Init_array[solution2 [1],

best_arr4[0, 1] + 7]), Int32.Parse(

Init_array[solution2 [1], best_arr4

[0, 2] + 7]),

68 best_arr4 [1, 0], best_arr4[1, 1],

best_arr4[1, 2]);

69

70 Console.WriteLine("1st Antenna " + Antenna1.X + " and " +

Antenna1.Y);

71 Console.WriteLine("2nd Antenna " + Antenna2.X + " and " +

Antenna2.Y);

72 Console.WriteLine("3rd Antenna " + Antenna3.X + " and " +

Antenna3.Y);

73 Console.WriteLine("4th Antenna " + Antenna4.X + " and " +

Antenna4.Y);

74

75 // Console.ReadKey ();

76 // Alternative estimation of the centre of the robot + position

77 //m1 = ((float)Antenna2.Y - (float)Antenna1.Y) / ((float)

Antenna2.X - (float)Antenna1.X);

78 //m2 = ((float)Antenna4.Y - (float)Antenna3.Y) / ((float)

Antenna4.X - (float)Antenna3.X);

79 // RobStartx_fl = (1 / (m1 - m2)) * (m1 * (float)Antenna1.X - m2

* (float)Antenna3.X - (float)Antenna1.Y + (float)Antenna3.Y)

;

80 // RobStarty_fl = m1 * (RobStartx_fl - (float)Antenna1.X) + (

float)Antenna1.Y;

81

82 // Starting.X = (int)RobStartx_fl;

83 // Starting.Y = (int)RobStarty_fl;

84

85 Starting.X = (((Antenna4.X-Antenna3.X)*(Antenna2.X*Antenna1.Y-

Antenna1.X*Antenna2.Y) -(Antenna2.X-Antenna1.X)*(Antenna4.X*

Antenna3.Y-Antenna3.X*Antenna4.Y)) /

86 ((Antenna4.Y - Antenna3.Y) * (Antenna2.X -

Final report, Local positioning system pipeless plant, September 26, 2018 Page 71

Antenna1.X) - (Antenna2.Y - Antenna1.Y)

* (Antenna4.X - Antenna3.X)));

87 Starting.Y = (((Antenna1.Y - Antenna2.Y) * (Antenna4.X *

Antenna3.Y - Antenna3.X * Antenna4.Y) - (Antenna3.Y -

Antenna4.Y) * (Antenna2.X * Antenna1.Y - Antenna1.X *

Antenna2.Y)) /

88 ((Antenna4.Y - Antenna3.Y) * (Antenna2.X -

Antenna1.X) - (Antenna2.Y - Antenna1.Y)

* (Antenna4.X - Antenna3.X)));

89

90 Console.WriteLine("Robotstarting Position at:" + Starting.X + "

mm , " + Starting.Y + "mm");

91

92 // Computing the orientation of the Robot

93 //angle = (Math.Atan2(y, x)) * (180 / Math.PI);

94 angleTemp = (Math.Atan2((Antenna1.Y - Starting.Y), (Antenna1.X -

Starting.X))) * (180 / Math.PI);

95 Console.WriteLine("Angle temp " + angleTemp);

96 angle = angleTemp - (double)(solution1 [0]*45.0); // in deg

97 Console.WriteLine("Angle wrong direction " + angle);

98 if (angle <= 0.0)

99 {

100 angle = angle + 180;

101 }

102 else

103 {

104 angle = angle - 180;

105 }

106

107 Console.WriteLine("Robotangle: " + angle + " Â◦ ");

108

109 }

11.8 Appendix H: Initialization procedure 3(C#)

1 // Procedure and function

2 // Methode to compute the position based on the ID in [cm], Output in [mm]

3 public static Position Trilateration(Position point1 , Position point2 ,

Position point3 , int r1t , int r2t , int r3t , int bestr1 , int bestr2 ,

int bestr3)

4 {

5 // double [] dist = new double [] { 10.5, 10.0, 9.5, 9.0, 8.0, 6.0,

5.0, 4.0 }; // FH paper

6 double[,] dist = new double[3, 8] { { 14, 9.75, 9.0, 8.0, 7.0, 6.0,

3.5, 2.75 },

7 { 5.0, 5.1, 5.3, 5.5, 5.8, 4.0,

3.5, 2.75 },

8 { 5.0, 4.7, 4.5, 4.3, 4.2, 4.0,

3.5, 2.75} }; //

Approximation of our

measurements

9

Final report, Local positioning system pipeless plant, September 26, 2018 Page 72

10 Position resultPose = new Position ();

11 PositionD ex = new PositionD ();

12 PositionD ey = new PositionD ();

13 PositionD aux = new PositionD ();

14 PositionD auy = new PositionD ();

15 PositionD aux2 = new PositionD ();

16 double r1;

17 double r2;

18 double r3;

19 r1 = dist[bestr1 , r1t];

20 r2 = dist[bestr2 , r2t];

21 r3 = dist[bestr3 , r3t];

22

23 // For testing purpose

24 // Console.WriteLine ("1st radius " + r1);

25 // Console.WriteLine ("2nd radius " + r2);

26 // Console.WriteLine ("3rd radius " + r3);

27

28 // Console.WriteLine ("1st point " + point1.X + " " + point1.Y);

29 // Console.WriteLine ("2nd point " + point2.X + " " + point2.Y);

30 // Console.WriteLine ("3rd point " + point3.X + " " + point3.Y);

31

32 //unit vector in a direction from point1 to point 2

33 double p2p1Distance = Math.Pow(Math.Pow(point2.X - point1.X, 2) +

Math.Pow(point2.Y - point1.Y, 2), 0.5);

34 ex.X = (point2.X - point1.X) / p2p1Distance;

35 ex.Y = (point2.Y - point1.Y) / p2p1Distance;

36 aux.X = point3.X - point1.X;

37 aux.Y = point3.Y - point1.Y;

38 // signed magnitude of the x component

39 double i = ex.X * aux.X + ex.Y * aux.Y;

40 //the unit vector in the y direction.

41 aux2.X = point3.X - point1.X - i * ex.X;

42 aux2.Y = point3.Y - point1.Y - i * ex.Y;

43 ey.X = aux2.X / Norm(aux2);

44 ey.Y = aux2.Y / Norm(aux2);

45 //the signed magnitude of the y component

46 double j = ey.X * aux.X + ey.Y * aux.Y;

47 // coordinates

48 double x = (Math.Pow(r1, 2) - Math.Pow(r2, 2) + Math.Pow(

p2p1Distance , 2)) / (2 * p2p1Distance);

49 double y = (Math.Pow(r1, 2) - Math.Pow(r3, 2) + Math.Pow(i, 2) +

Math.Pow(j, 2)) / (2 * j) - i * (x / j);

50 // result coordinates

51 double finalX = 10 * (point1.X + x * ex.X + y * ey.X);

52 double finalY = 10 * (point1.Y + x * ex.Y + y * ey.Y);

53 resultPose.X = (int)(finalX);

54 resultPose.Y = (int)(finalY);

55

56 return resultPose;

57 }

Final report, Local positioning system pipeless plant, September 26, 2018 Page 73

11.9 Appendix I: Initialization procedure 4(C#)

1

2 // Method to compute the norm of a vector

3 public static double Norm(PositionD p) // get the norm of a vector

4 {

5 return (Math.Pow(Math.Pow(p.X, 2) + Math.Pow(p.Y, 2), 0.5));

6 }

7

8 // Methode to compute the position based on the ID in [mm]

9 public static Position IDtoPOS(int ID)

10 {

11 Position FinalPos = new Position ();

12 int[] posx = new int [9] { 10, 10, 10, 20, 20, 20, 30, 30, 30 };

13 int[] posy = new int [9] { 10, 20, 30, 10, 20, 30, 10, 20, 30 };

14 // For a 3x3 testing field

15 FinalPos.X = posx[ID - 1];

16 FinalPos.Y = posy[ID - 1];

17 return FinalPos;

18 }

11.10 Appendix J: Initialization procedure 5(C#)

1 // Find neighbours of the IDs

2 public static int[] FindNeig(int[] arrID , int numTags)

3 {

4 // Init

5 int[] neighbours = new int[numTags];

6 int[] tempNeig = new int [4];

7

8 // Find the number of neighbours

9 for (int m = 0; m < numTags; m++)

10 {

11 // Init

12 neighbours[m] = 0;

13

14 // Take actual ID and compute the possible neighbours

15 tempNeig [0] = arrID[m] - 11;

16 tempNeig [1] = arrID[m] - 1;

17 tempNeig [2] = arrID[m] + 1;

18 tempNeig [3] = arrID[m] + 11;

19

20 for (int v = 0; v < 4; v++)

21 {

22 foreach (int tempinput in arrID)

23 {

24 if (tempinput == tempNeig[v])

25 {

26 neighbours[m] += 1;

27 }

28 }

29 }

Final report, Local positioning system pipeless plant, September 26, 2018 Page 74

30 }

31 return neighbours;

32 }

11.11 Appendix K: Initialization procedure 6(C#)

1 // Methode to compute the best IDs and correct distances

2 public static int[,] CorrectID_Distance(int[] arr , int[] arrRSSI , int

numTags)

3 {

4 // Inputs

5 /* arr = Array of all IDs

6 * arrRSSI = Array of all RSSI

7 numTags = Int with the num of tags found

8 */

9 // Init

10 int[,] best = new int[2, 3];

11 int[] dist = new int[numTags]; // Array which contain the

best distance (max (0),middle (1),min (2))

12 int[] neighbours = new int[numTags];

13 int i = 0;

14 int p = 4;

15

16 // Compute the neighbours

17 neighbours = FindNeig(arr , numTags);

18

19

20 // Switch case for the different possible shapes

21 switch (numTags)

22 {

23 case 3:

24 Console.WriteLine("3 Tags ----------");

25 for (int l = 0; l < neighbours.GetLength (0); l++)

26 {

27 if (neighbours[l] == 0) // Detect outlier and

boarder

28 {

29 dist[l] = 1; // stay max

30 }

31 else if (neighbours[l] <= 3) // Detect outlier and

boarder

32 {

33 dist[l] = 0; // stay max

34 }

35 else if (neighbours[l] == 4) // Detect the inner ,

change it to min/middle

36 {

37 dist[l] = 1; // change it to middle

38 }

39 else if (neighbours[l] > 4) // Detect the inner ,

change it to min/middle

40 {

Final report, Local positioning system pipeless plant, September 26, 2018 Page 75

41 dist[l] = 0; // change it to middle

42 }

43 // all other numbers are at the boarder

44 }

45 // Select the best 3 readings

46 i = 0;

47 p = 4;

48 while (i < 3) // Start for the first ID

49 {

50 for (int h = 0; h < neighbours.GetLength (0); h++) //

looks for a fitting

51 {

52 if (neighbours[h] == p && i < 3) // hit must be

same value and less then 3 hits

53 {

54 best[0, i] = h; // index of the

best ID

55 best[1, i] = dist[h]; // info about

max , mid and min of this ID

56 i += 1;

57 }

58 else if (i >= 3)

59 {

60 break;

61 }

62 }

63 p -= 1;

64 }

65 break;

66 /*

--

*/

67 case 4:

68 Console.WriteLine("4 Tags ----------");

69 for (int l = 0; l < neighbours.GetLength (0); l++)

70 {

71 if (neighbours[l] == 0) // Detect outlier and

boarder

72 {

73 dist[l] = 1; // stay max

74 }

75 else if (neighbours[l] <= 3) // Detect outlier and

boarder

76 {

77 dist[l] = 0; // stay max

78 }

79 else if (neighbours[l] == 4) // Detect the inner ,

change it to min/middle

80 {

81 dist[l] = 1; // change it to middle

82 }

Final report, Local positioning system pipeless plant, September 26, 2018 Page 76

83 else if (neighbours[l] > 4) // Detect the inner ,

change it to min/middle

84 {

85 dist[l] = 0; // change it to middle

86 }

87 // all other numbers are at the boarder

88 }

89 // Select the best 3 readings

90 i = 0;

91 p = 4;

92 while (i < 3) // Start for the first ID

93 {

94 for (int h = 0; h < neighbours.GetLength (0); h++) //

looks for a fitting

95 {

96 if (neighbours[h] == p && i < 3) // hit must be

same value and less then 3 hits

97 {

98 best[0, i] = h; // index of the

best ID

99 best[1, i] = dist[h]; // info about

max , mid and min of this ID

100 i += 1;

101 }

102 else if (i >= 3)

103 {

104 break;

105 }

106 }

107 p -= 1;

108 }

109

110 break;

111 /*

--

*/

112 case 5:

113 Console.WriteLine("5 Tags ----------");

114 for (int l = 0; l < neighbours.GetLength (0); l++)

115 {

116 if (neighbours[l] <= 2) // Detect outlier and

boarder

117 {

118 dist[l] = 0; // stay max

119 }

120 else if (neighbours[l] == 3) // Detect the inner ,

change it to min/middle

121 {

122 dist[l] = 1; // change it to middle

123 }

124 // all other numbers are at the boarder

Final report, Local positioning system pipeless plant, September 26, 2018 Page 77

125 }

126 // Select the best 3 readings

127 i = 0;

128 p = 4;

129 while (i < 3) // Start for the first ID

130 {

131 for (int h = 0; h < neighbours.GetLength (0); h++) //

looks for a fitting

132 {

133 if (neighbours[h] == p && i < 3) // hit must be

same value and less then 3 hits

134 {

135 best[0, i] = h; // index of the

best ID

136 best[1, i] = dist[h]; // info about

max , mid and min of this ID

137 i += 1;

138 }

139 else if (i >= 3)

140 {

141 break;

142 }

143 }

144 p -= 1;

145 }

146 break;

147

148 /*

--

*/

149 case 6:

150 Console.WriteLine("6 Tags ----------");

151 switch (neighbours.Sum())

152 {

153 case 12: // Shape with 2 outliers

154 Console.WriteLine("2 Outliers");

155 for (int l = 0; l < neighbours.GetLength (0); l++)

156 {

157 if (neighbours[l] <= 2) // Detect outlier

and boarder

158 {

159 dist[l] = 0; // stay max

160 }

161 else if (neighbours[l] == 4) // Detect the

inner , change it to min/middle

162 {

163 if (arrRSSI[l] <= 3)

164 {

165 dist[l] = 2; // change it to

min

166 }

Final report, Local positioning system pipeless plant, September 26, 2018 Page 78

167 else if (arrRSSI[l] > 3)

168 {

169 dist[l] = 1; // change it to

middle

170 }

171 }

172 // all other numbers are at the boarder

173 }

174 break;

175 case 14: // Shape like a domino

176 Console.WriteLine("Domino");

177 for (int l = 0; l < neighbours.GetLength (0); l++)

178 {

179 if (neighbours[l] <= 2) // Detect outlier

and boarder

180 {

181 dist[l] = 0; // stay max

182 }

183 else if (neighbours[l] == 3) // Detect the

centre , change it to min

184 {

185 dist[l] = 2; // change it to min

186 }

187 // all other numbers are at the boarder

188 }

189 break;

190 default:

191 Console.WriteLine("Default case");

192 break;

193 }

194 // Select the best 3 readings

195 i = 0;

196 p = 4;

197 while (i < 3) // Start for the first ID

198 {

199 for (int h = 0; h < neighbours.GetLength (0); h++) //

looks for a fitting

200 {

201 if (neighbours[h] == p && i < 3) // hit must be

same value and less then 3 hits

202 {

203 best[0, i] = h; // index of the

best ID

204 best[1, i] = dist[h]; // info about

max , mid and min of this ID

205 i += 1;

206 }

207 else if (i >= 3)

208 {

209 break;

210 }

Final report, Local positioning system pipeless plant, September 26, 2018 Page 79

211 }

212 p -= 1;

213 }

214

215 break;

216 /*

--

*/

217 case 7:

218 Console.WriteLine("7 Tags ----------");

219 for (int l = 0; l < neighbours.GetLength (0); l++)

220 {

221 if (neighbours[l] <= 3) // Detect outlier and

boarder

222 {

223 dist[l] = 0; // stay max

224 }

225 else if (neighbours[l] == 4) // Detect the centre ,

change it to min

226 {

227 dist[l] = 2; // change it to min

228 }

229 // all other numbers are at the boarder

230 }

231 // Select the best 3 readings

232 i = 0;

233 p = 4;

234 while (i < 3) // Start for the first ID

235 {

236 for (int h = 0; h < neighbours.GetLength (0); h++) //

looks for a fitting

237 {

238 if (neighbours[h] == p && i < 3) // hit must be

same value and less then 3 hits

239 {

240 best[0, i] = h; // index of the

best ID

241 best[1, i] = dist[h]; // info about

max , mid and min of this ID

242 i += 1;

243 }

244 else if (i >= 3)

245 {

246 break;

247 }

248 }

249 p -= 1;

250 }

251 break;

252 default:

253 Console.WriteLine("Default case");

Final report, Local positioning system pipeless plant, September 26, 2018 Page 80

254 break;

255 }

256 foreach (int ee in best)

257 {

258 Console.WriteLine(ee);

259 }

260 return best;

261 }

11.12 Appendix L: Initialization procedure 7(C#)

1 // Methode to compute the position based on the ID in [cm], Output in [mm]

2 public static Position Trilateration(Position point1 , Position point2 ,

Position point3 , int r1t , int r2t , int r3t , int bestr1 , int bestr2 ,

int bestr3)

3 {

4 // double [] dist = new double [] { 10.5, 10.0, 9.5, 9.0, 8.0, 6.0,

5.0, 4.0 }; // FH paper

5 double[,] dist = new double[3, 8] { { 14, 9.75, 9.0, 8.0, 7.0, 6.0,

3.5, 2.75 },

6 { 5.0, 5.1, 5.3, 5.5, 5.8, 4.0,

3.5, 2.75 },

7 { 5.0, 4.7, 4.5, 4.3, 4.2, 4.0,

3.5, 2.75} }; //

Approximation of our

measurements

8

9 Position resultPose = new Position ();

10 PositionD ex = new PositionD ();

11 PositionD ey = new PositionD ();

12 PositionD aux = new PositionD ();

13 PositionD auy = new PositionD ();

14 PositionD aux2 = new PositionD ();

15 double r1;

16 double r2;

17 double r3;

18 r1 = dist[bestr1 , r1t];

19 r2 = dist[bestr2 , r2t];

20 r3 = dist[bestr3 , r3t];

21

22 // For testing purpose

23 // Console.WriteLine ("1st radius " + r1);

24 // Console.WriteLine ("2nd radius " + r2);

25 // Console.WriteLine ("3rd radius " + r3);

26

27 // Console.WriteLine ("1st point " + point1.X + " " + point1.Y);

28 // Console.WriteLine ("2nd point " + point2.X + " " + point2.Y);

29 // Console.WriteLine ("3rd point " + point3.X + " " + point3.Y);

30

31 //unit vector in a direction from point1 to point 2

32 double p2p1Distance = Math.Pow(Math.Pow(point2.X - point1.X, 2) +

Math.Pow(point2.Y - point1.Y, 2), 0.5);

Final report, Local positioning system pipeless plant, September 26, 2018 Page 81

33 ex.X = (point2.X - point1.X) / p2p1Distance;

34 ex.Y = (point2.Y - point1.Y) / p2p1Distance;

35 aux.X = point3.X - point1.X;

36 aux.Y = point3.Y - point1.Y;

37 // signed magnitude of the x component

38 double i = ex.X * aux.X + ex.Y * aux.Y;

39 //the unit vector in the y direction.

40 aux2.X = point3.X - point1.X - i * ex.X;

41 aux2.Y = point3.Y - point1.Y - i * ex.Y;

42 ey.X = aux2.X / Norm(aux2);

43 ey.Y = aux2.Y / Norm(aux2);

44 //the signed magnitude of the y component

45 double j = ey.X * aux.X + ey.Y * aux.Y;

46 // coordinates

47 double x = (Math.Pow(r1, 2) - Math.Pow(r2, 2) + Math.Pow(

p2p1Distance , 2)) / (2 * p2p1Distance);

48 double y = (Math.Pow(r1, 2) - Math.Pow(r3, 2) + Math.Pow(i, 2) +

Math.Pow(j, 2)) / (2 * j) - i * (x / j);

49 // result coordinates

50 double finalX = 10 * (point1.X + x * ex.X + y * ey.X);

51 double finalY = 10 * (point1.Y + x * ex.Y + y * ey.Y);

52 resultPose.X = (int)(finalX);

53 resultPose.Y = (int)(finalY);

54

55 return resultPose;

56 }

Final report, Local positioning system pipeless plant, September 26, 2018 Page 82

11.13 Appendix M: WiFi Initialization WeMos D1 Mini (Arduino)

1 #include <SoftwareSerial.h>

2 #include <ESP8266WiFi.h>

3 #include <ESP8266HTTPClient.h>

4 #include <string.h>

5 #include <ArduinoJson.h>

6

7

8 //how many clients should be able to telnet to this ESP8266

9 #define MAX_SRV_CLIENTS 2

10

11 // Definig Wifi address , password , host and port

12 //const char* ssid = "UPC113C854 A.Abouelkhair "; // write SSID between "(

here)"

13 //const char* password = "rnU3cu6dzpkA "; // write Password between

"(case sensitive)"

14 //const char* ssid = "iPhone "; // write SSID between "(

here)"

15 //const char* password = "boody123 "; // write Password between

"(case sensitive)"

16 const char* ssid = "iRobot"; // write SSID between "(here

)"

17 const char* password = "nopipes123"; // write Password between "(

case sensitive)"

18 //const char* ssid = "DORTMUND -DEMO -AP"; // write SSID

between "(here)"

19 //const char* password = "R0b0tn1K "; // write Password between "(

case sensitive)"

20

21 // Starting Wifi Server and client with Port 8883

22 WiFiServer server (8883);

23 WiFiClient serverClients[MAX_SRV_CLIENTS];

24

25 // Variables Declaration

26 unsigned long previousMillis = 0;

27 const long interval = 10;

28 unsigned long currentTime;

29

30 /* RFID Intialization */

31 SoftwareSerial RFID(14, 12, false , 256); //RX,TX = D5,D6 (Wemos UART1)

11.14 Appendix N: Launch the communication)

1 void setup() {

2 /* Beginning Serial Communication with RFID with baud rate 115200 */

3 RFID.begin (115200);

4 // delay (10);

5 // Beginning Serial Communication with baud rate 115200

6 Serial.begin (115200);

7 // delay (10);

8 Serial.println ();

Final report, Local positioning system pipeless plant, September 26, 2018 Page 83

9

10

11 Serial.println ();

12 Serial.print("Connecting to ");

13 Serial.println(ssid);

14

15 // Time is used so the device does not stuck in

16 // connecting to Wifi forever

17 currentTime = millis ();

18 unsigned long previousTime = currentTime;

19 while (WiFi.status () != WL_CONNECTED) {

20 delay (500);

21 Serial.print(".");

22 currentTime = millis ();

23 if ((currentTime - previousTime) > 12000) {

24 break;

25 }

26 }

27

28

29 WiFi.mode(WIFI_STA);

30 WiFi.begin(ssid , password);

31 uint8_t i = 0;

32 while (WiFi.status () != WL_CONNECTED && i++ < 20) delay (500);

33 if (i == 21) {

34 Serial.print("Could not connect to"); Serial.println(ssid);

35 while (1) delay (500);

36 }

37 server.begin ();

38 server.setNoDelay(true);

39

40

41 // Getting the MAC address and saving it

42 if (WiFi.status () == WL_CONNECTED) {

43 Serial.println("");

44 Serial.println("WiFi connected");

45 Serial.print("IP address: ");

46 Serial.println(WiFi.localIP ());

47 Serial.println("Port: 8883");

48 }

49

50 /* AUTO Send AT Command to the RFID */

51 RFID.write("AT+Scan=OFF\r");

52 // RFID.write ("AT+Scan=AC,RSSI\r");

53 RFID.write("AT+Scan=AC,RSSI\r");

54

55 // delay (10);

56

57

58 }

Final report, Local positioning system pipeless plant, September 26, 2018 Page 84

11.15 Appendix O: Receiving data from RFID reader

1 void loop() {

2 // put your main code here , to run repeatedly

3

4 // while(RFID.available ())

5 // {

6 // char read= RFID.read();

7 // Serial.print(read);

8 // delay (10);

9 // }

10

11 /*Send commands Through Wifi*/

12 sendCommandsWiFi ();

13

14 /* send AT Commands to RFID through serial monitor */

15 // Example: AT+Scan=AC,RSSI "Without /r"

16 // Comment the next command if you are using AUTO command send

17 sendCommandsRFID ();

18

19

20 }

11.16 Appendix P: Publishing tags IDs through the network

1 void sendCommandsWiFi ()

2 {

3

4 unsigned long currentMillis = millis ();

5 uint8_t i;

6 // check if there are any new clients

7 if (server.hasClient ()) {

8 for (i = 0; i < MAX_SRV_CLIENTS; i++) {

9 //find free/disconnected spot

10 if (! serverClients[i] || !serverClients[i]. connected ()) {

11 if (serverClients[i]) serverClients[i].stop();

12 serverClients[i] = server.available ();

13 continue;

14 }

15 }

16 //no free/disconnected spot so reject

17 WiFiClient serverClient = server.available ();

18 serverClient.stop();

19 }

20

21 //do every 2ms edit from time interval in Declaration

22 // if (currentMillis - previousMillis >= interval) //

23 // { //

24 // previousMillis = currentMillis; //

25 for (i = 0; i < MAX_SRV_CLIENTS; i++)

26 {

27 if (serverClients[i] && serverClients[i]. connected ())

Final report, Local positioning system pipeless plant, September 26, 2018 Page 85

28 {

29 // delay (20);

30 // RFID.write ("AT+A\r");

31 while(RFID.available () >0)

32 {

33 char read = RFID.read();

34 serverClients[i]. print(read);

35 // delay (1); //

36 }

37 }

38 }

39 // } //

40

41 }

11.17 Appendix Q: Manual Configuration of the RFID reader

1 void sendCommandsRFID ()

2 {

3 /* send AT Commands to RFID through serial monitor */

4 // Example: AT+Scan=AC,RSSI "Without /r"

5 while (Serial.available () > 0) {

6 RFID.write(Serial.read());

7 }

8

9 }

Final report, Local positioning system pipeless plant, September 26, 2018 Page 86

11.18 Appendix R: Communication Outlay

Figure 44: Communication Outlay

	Introduction
	Pipeless plant
	Experimental pipeless production plant
	Problems with the existing setup
	Project objectives

	Possible localization technologies for chosen application
	Triangulation
	Pattern Recognition
	Map-Based Localizationmbl
	RFID

	Principle of localization via Radio Frequency Identification technology
	Radio Frequency Identification
	RFID System
	Working Principle

	Trilateration

	Hardware
	RFID reader and antenna
	RFID tag
	Wifi Module
	Hardware Setup

	Simulation
	Emulator
	RSSI Measurements with real hardware
	Simulation with emulated data
	Results

	Implementation
	Communication
	Initialization procedure
	Recording and filtering data
	Analysing data
	Selection of correct distance related to RSSI
	Estimation of initial position and orientation

	Test setup
	Results

	Conclusion
	Future work
	Hardware
	Software

	References
	Appendixes
	Appendix A: Emulator RFID data (Matlab)
	Appendix B: Receiving data from reader via Wifi (C#)
	Appendix C: Initialization procedure (C#)
	Appendix D: Initialization turn and recording Data(C#)
	Appendix E: Filling Array(C#)
	Appendix F: Checking for solutions in array(C#)
	Appendix G: Position and orientation estimation(C#)
	Appendix H: Initialization procedure 3(C#)
	Appendix I: Initialization procedure 4(C#)
	Appendix J: Initialization procedure 5(C#)
	Appendix K: Initialization procedure 6(C#)
	Appendix L: Initialization procedure 7(C#)
	Appendix M: WiFi Initialization WeMos D1 Mini (Arduino)
	Appendix N: Launch the communication)
	Appendix O: Receiving data from RFID reader
	Appendix P: Publishing tags IDs through the network
	Appendix Q: Manual Configuration of the RFID reader
	Appendix R: Communication Outlay

